Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6

Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6 बहुपद तथा उनके गुणनखण्ड

Ex 5.6 Polynomial and their Factors अतिलघु उत्तरीय प्रश्न (Very Short Answer Type Question)

निम्न व्यंजकों के गुणनखण्ड ज्ञात कीजिए।
प्रश्न 1.
x2 + 7x + 12
हल:
x2 + 7x + 12 = x2 + (3 + 4)x + 12 12 = 3 × 4
= x2 + 3x + 4x + 12 = x(x + 3) + 4(x + 3) = (x + 3)(x + 4)

Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6

प्रश्न 2.
x² – 14x + 48
हल:
x² – 14x + 48 = x² – (6 + 8)x + 48 (48 = 6 × 8)
= x² – 6x – 8x + 48 = x(x – 6) – 8(x – 6) = (x – 6)(x – 8)

प्रश्न 3.
x² – 7x – 18
हल:
x² – 7x – 18 = x² – (9 – 2)x – 18 = x² – 9x + 2x – 18 = x(x – 9) + 2(x – 9) = (x – 9)(x + 2)

प्रश्न 4.
x² – 25x + 84
हल:
x² – 25x + 84 = x² – (21 + 4)x + 84 (84 = 4 × 21)
= x² – 21x – 4x + 84= x(x -21)- 4(x – 21)= (x – 21)(x – 4)

प्रश्न 5.
2x² + 7x + 6
हल:
2x² + 7x + 6 = 2x² + (3 + 4)x + 6                         (2 × 6 = 12 ⇒ 12 = 3 × 4)
= 2x² + 3x + 4x + 6 = x(2x + 3) + 2(2x + 3) = (2x + 3)(x + 2)

प्रश्न 6.
2x² – 13x + 15
हलः
2x² – 13x + 15 = 2x² – (3 + 10)x + 15 (2 × 15 = 30 ⇒ 30 = 3 × 10)
= 2x² – 3x – 10x + 15 = x(2x – 3) – 5(2x – 3) = (2x – 3)(x – 5)

प्रश्न 7.
3x² – 14x + 8
हल:
3x² – 14x + 8 = 3x² – (2 + 12)x + 8 (3 × 8 = 24 ⇒ 24 = 12 × 2)
= 3x² – 2x – 12x + 8= x(3x – 2) – 4(3x – 2) = (3x – 2)(x – 4 )

Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6

प्रश्न 8.
3x² + 10x – 8
हलः
3x² + 10x – 8= 3x² + (12 – 2)x – 8 (3 × 8 = 24 ⇒ 24 = 2× 12)
= 3x2 + 12x – 2x – 8 = 3x(x + 4) – 2(x + 4)= (x + 4)(3x – 2)

Ex 5.6 Polynomial and their Factors लघु उत्तरीय प्रश्न – I (Short Answer Type Questions – I)

प्रश्न 9.
निम्न व्यंजकों के गुणनखण्ड ज्ञात कीजिए
(i) 8(x + 2)2 + 2(x + 2) – 15
(ii) 12(x² + 7x)2 – 8(x² + 7x)(2x – 1) – 15(2x – 1)2
(iii) (x² – 2x)2 – 23(x² – 2x) + 120
(iv) (x + 2y)2 + 5(x + 2y)(2x + y) + 6(2x + y)2
हलः
(i) 8(x + 2)2 + 2(x + 2) – 15
माना x + 2 = y
= 8y2 + 2y – 15
= 8y2 +(12 – 10)y – 15 (8 × 15 = 120 ⇒ 120 = 12 × 10)
= 8y2 + 12y – 10y – 15 = 4y(2y + 3) – 5(2y + 3)
= (2y + 3)(4y – 5)=[2(x + 2) + 3] [4(x + 2) – 5]
= [2x + 4 + 3][4x + 8 – 5) = (2x + 7) (4x + 3)

(ii) 12(x² + 7x)2 – 8(x² + 7x)(2x – 1) – 15(2x – 1)2
हलः
x² + 7x = y तथा 2x – 1 = z
= 12y2 – 8yz – 15z2
= 12y2 – (18 – 10)yz – 15z2 (12 × 15 = 180 ⇒ 180 = 2 × 2 × 3 × 3 × 5)
= 12y2 – 18ýz + 10yz – 15z2
= 6y (2y – 3z) + 5z(2y – 3z) = (2y – 3z)(6y + 5z)
= [2(x² + 7x) – 3(2x – 1)][6(x² + 7x) + 5(2x – 1)]
= [2x² + 14x – 6x + 3] [6x² + 42x + 10x – 5]
= [2x² + 8x + 3][6x² + 52x – 5]

(iii) (x² – 2x)2 – 23(x² – 2x) + 120
हलः
x² – 2x = y
=y2 – 23y + 120
= y2 – (8 + 15)y + 120 (120 = 8 × 15)
= y2 – 8y – 15y + 120 = y(y – 8) – 15(y – 8)
= (y – 15)(y – 8)
= (x² – 2x – 15)(x² – 2x – 8) (15 = 3 × 5 व 8 = 4 × 2)
= [x² – (5 – 3)x – 15][x² – (4 – 2)x – 8]
= [x² – 5x + 3x – 15][x² – 4x + 2x – 8]
=[x(x – 5) + 3(x – 5)][x(x – 4) + 2(x – 4)]
= [(x + 3)(x – 5)][(x – 4)(x + 2)]

Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6

(iv) (x + 2y)2 + 5(x + 2y)(2x + y) + 6(2x + y)2
हलः
माना x + 2y = m तथा 2x + y = n
= m2 + 5mn + 6n2 = m2 +(2 + 3)mn +6n2
= m2 + 2mn + 3mn + 6n2 = m(m + 2n) + 3n(m + 2n)
= (m + 2n)(m + 3n)
यहाँ [x + 2y + 2(2x + y)][x + 2y + 3(2x + y)]
=[x + 2y + 4x + 2y][x + 2y + 6x + 3y] = [5x + 4y][7x + 5y]

प्रश्न 10.
निम्न व्यंजकों के गुणनखण्ड ज्ञात कीजिए
(i) [latex]\frac{1}{3} x^{2}[/latex] – 2x – 9
(ii) [latex]\frac{1}{4} x^{2}[/latex] + x – 3
(iii) 8x3 – 2x2y – 15xy2
(iv) 9x3y +41x2y2 + 20xy3
हलः
Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6
Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6 Q 2
(iii) 8x3 – 2x²y – 15xy2 = x[8x² – 2xy -15y2]
= x[8x² – (12 – 10)xy -15y2] (∵ 8 × 15 = 120 ⇒ 120 = 12× 10)
= x[8x² – 12xy + 10xy – 15y2]
= x[4x(2x – 3y) + 5y(2x – 3y)] = x(2x – 3y)(4x + 5y)

(iv) 9x3y + 41x²y2 + 20xy3 = xy[9x² + 41xy + 20y2]
= xy[9x² + (36 + 5)xy + 20y2] (9 × 20 = 180 ⇒ 180 = 2 × 2 × 3 × 3 × 5)
= xy[9x² + 36xy + 5xy + 20y2]
= xy[9x(x + 4y) + 5y (x + 4y)] = xy(9x + 5y)(x + 4y)

प्रश्न 11.
निम्न व्यंजकों के गुणनखण्ड ज्ञात कीजिए
(i) x² +4x – 21
(ii) x² – 7x + 12
(iii) x² – 21x + 108
(iv) x² + 5x – 36
हल:
(i) x² + 4x – 21 = x² + (7 – 3)x – 21 (21 = 3 × 7)
= x² + 7x – 3x – 21 = x(x + 7) – 3(x + 7) = (x + 7)(x – 3)

(ii) x² – 7x + 12 = x² – (3 + 4)x + 12 (12 = 2 × 2 × 3)
= x² – 3x – 4x + 12 = x(x – 3) – 4(x – 3) = (x – 3)(x – 4)

(iii) x² – 21x + 108 = x² – (12 + 9)x + 108 (108 = 2 × 2 × 3 × 3 × 3 = 12 × 9)
= x² – 12x – 9x + 108 = x(x – 12)- 9(x – 12) = (x – 12)(x – 9)

(iv) x² + 5x – 36 = x² + (9 – 4)x – 36 (36 = 2 × 2 × 3 × 3)
= x² + 9x – 4x – 36 = x(x + 9)- 4(x + 9) = (x + 9)(x – 4)

Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6

प्रश्न 12.
निम्न व्यंजकों के गुणनखण्ड इनके मध्य पद को विभक्त करके कीजिए
(i) x4 + 3x² – 28
(ii) x4 – 5x² + 4
हल:
(i) x4 + 3x² – 28 = x4 + (7 – 4)x² – 28 (∵ 28 = 2 × 2 × 7)
= x4 + 7x² – 4x² – 28 = x2(x² + 7) – 4(x² + 7)
= (x² + 7)(x² – 4) = (x² + 7)[(x)4 – (2)4] = (x² + 7)(x + 2)(x – 2)

(ii) x4 – 5x² + 4 = x4 – (1 + 4)x² + 4 (∵ 4 = 1 × 4)
= x4 – x² – 4x² + 4 = x2(x² – 1) – 4(x² – 1) = (x² – 1)(x² – 4)
= [(x)2 – (1)2][(x²) – (2)2] = (x + 1)(x – 1)(x + 2)(x – 2)

प्रश्न 13.
निम्न व्यंजकों के गुणनखण्ड ज्ञात कीजिए
(i) x² + [latex]4 \sqrt{2} x[/latex] + 6
(ii) x² + [latex]5 \sqrt{3} x[/latex] + 12
(iii) x² + [latex]5 \sqrt{5} x[/latex] + 30
(iv) x² + [latex]6 \sqrt{6} x[/latex] + 48
हलः
Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6
Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6

प्रश्न 14.
निम्न व्यंजकों के गुणनखण्ड ज्ञात कीजिए
(i) [latex]\left(5 x-\frac{1}{x}\right)^{2}+5\left(5 x-\frac{1}{x}\right)+6[/latex]
(ii) (p + q)2 – 20(p + q) – 125
(iii) (a2 – a)2 – 8(a2 – a) + 12
(iv) (x² – 4x)(x² – 4x – 1) – 20
(v) (x² + x)2 + 4(x² + x) – 12
(vi) (3x – 4)2 – (3x – 4) – 42
हलः
Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6
(ii) (p + q)2 – 20(p + q) – 125
माना P + q = x
= x² – 20x – 125 = x² – (25 – 5)x – 125
= x² – 25x + 5x – 125 = x(x – 25) + 5(x – 25)
= (x + 5)(x – 25)
∴ (p + q – 25)(p + q + 5)

(iii) (a2 – a)2 – 8(a2 – a) + 12
माना a2 – a = x
→ = x² – 8x + 12
= x² – (2 + 6)x + 12 = x² – 2x – 6x +12
= x(x – 2) – 6(x – 2) = (x – 2)(x – 6)
∴ (a2 – a – 2)(a2 – a – 6)
=[a2 – (2 – 1)a – 2][a2 – (3 – 2)a – 6]
=[a – 2a + a – 2][a2 – 3a + 2a – 6]
= [a(a – 2) + 1(a – 2)][a(a – 3) + 2(a – 3)]
= (a – 2)(a + 1)(a – 3)(a + 2)

Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6

(iv) (x² – 4x)(x² – 4x -1) – 20
माना x² – 4x = y
⇒ = y (y – 1) – 20 = y2 – y – 20
= y2 – (5 – 4)y – 20
= y2 – 5y + 4y – 20
= y(y – 5) + 4(y – 5) = (y – 5)(y + 4)
∴ (x² – 4x – 5)(x² – 4x + 4)
= [x² – (5 – 1)x – 5][x² – (2 + 2)x + 4]
= [x² – 5x + x – 5][x² – 2x – 2x + 4]
= [x(x – 5) + 16x – 5)][x(x – 2) – 2(x -2)]
= (x – 5) (x + 1) (x – 2) (x – 2) = (x – 5)(x + 1)(x – 2)2

(v) (x² + x)2 + 46x² + x) – 12
माना x² + x = y
= y2 + 4y – 12
= y2 + (6 – 2)y – 12 = y2 + 6y – 2y -12
= y(y + 6) – 2(y + 6) = (y + 6)(y – 2)
∴ (x² + x + 6) (x² + x – 2)
= (x² + x + 6)[x² + (2 – 1)x – 2] = (x² + x + 6)[x² + 2x – x – 2] = (x² + x + 6)[x(x + 2) – 1(x + 2)]
= (x² + x + 6)(x – 1)(x + 2)

(vi) (3x – 4)2 – (3x – 4) – 42
माना 3x – 4 = y
→ = y2 – y – 42 (∵ 42 = 2 × 3 × 7 = 6 × 7)
= y2 – (7 – 6)y – 42 = y2 – 7y + 6y – 42
= y(y – 7) + 6(y – 7) = (y – 7)(y + 6)
∴ (3x – 4 – 7)(3x – 4 + 6)
= (3x – 11)(3x + 2)

Ex 5.6 Polynomial and their Factors लघु उत्तरीय प्रश्न – II (Short Answer Type Questions – II)

प्रश्न 15.
निम्न व्यंजकों के गुणनखण्ड ज्ञात कीजिए
(i) x4 – x² – 12
(ii) m8 – 11m4n4 – 80n8
हल:
(i) x4 – x² – 12
= x4 – (4 – 3)x² – 12
= x2 – 4x² + 3x² – 12 = x2(x² – 4) + 3(x² – 4)
= (x² – 4)(x² + 3) = (x)2 – (2)2(x² + 3)
= (x + 2)(x – 2)(x² + 3)

(ii) m8 – 11m4n4 – 80n8 (∵ 80 = 2 × 2 × 2 × 2 × 5)
= m8 – (16 – 5)m4n4 – 80n8
= m8 – 16m4n4 + 5m4n8 – 80n8 = m4 (m4 – 16n4) + 5n4(m4 – 16n4)
= (m4 + 5n4)(m4 – 16n4) = (m4 + 5n4)(m2 + 4n2)(m2 – 4n2)
= (m4 + 5n4)(m2 + 4n)(m + 2n)(m – 2n)

Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6

प्रश्न 16.
निम्न व्यंजकों के गुणनखण्ड ज्ञात कीजिए
(i) 2x² + 13x + 20
(ii) 6x² + 11x + 3
(iii) 9x² + 27x + 20
(iv) 2x² – 11x – 63
(v) 10x² – 9x – 7
(vi) 21x² + 5x – 6
हल:
(i) 2x² + 13x + 20 (∵ 2 × 20 = 2 × 2 × 2 × 5)
= 2x² + (5 + 8)x + 20 = 2x² + 5x + 8x + 20
= x(2x + 5) + 4(2x + 5) = (2x + 5)(x + 4)

(ii) 6x² + 11x +3 (∵ 6x 3 = 18 = 2 × 3 × 3)
= 6x² + (2 + 9)x + 3 = 6x² + 2x + 9x + 3
= 2x(3x + 1) + 3(3x + 1) = (3x + 1)(2x +3)

(iii) 9x² + 27x + 20 = 9x² + (12 + 15)x + 20 (∵ 9 × 20 = 3 × 3 × 2 × 2 × 5)
= 9x² + 12x + 15x + 20 = 3x(3x + 4) + 5(3x + 4)= (3x + 4)(3x + 5)

(iv) 2x² – 11x – 63 = 2x² – (18 – 7)x – 63 (∵ 2 × 63 = 2 × 3 × 3 × 7)
= 2x² – 18x + 7x – 63 = 2x(x – 9) + 7(x – 9) = (x – 9)(2x + 7)

(v) 10x² – 9x – 7 = 10x² – (14 – 5)x – 7 (∵ 10 × 7 = 2 × 5 × 7)
= 10x² – 14x + 5x -7 = 2x(5x – 7) + 1(5x – 7) = (5x – 7)(2x + 1)

(vi) 21x² + 5x – 6 = 21x² + (14 – 9)x – 6 (∵ 21 × 6 = 3 × 7 × 2 × 3)
= 21x² + 14x – 9x – 6 = 7x (3x + 2) – 3(3x + 2) = (3x + 2)(7x – 3)

प्रश्न 17.
निम्न व्यंजकों के गुणनखण्ड ज्ञात कीजिए
(i) [latex]\frac{1}{2} x^{2}[/latex] + 4x + 6
(ii) 2x² – x + [latex]\frac{1}{8}[/latex]
हलः
Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6

प्रश्न 18.
निम्न व्यंजकों के गुणनखण्ड ज्ञात कीजिए
(i) 7(x + 2y)2 – 25(x + 2y) + 12
(ii) 8(a + 1)2 +2(a + 1)(b + 2) – 15(b + 2)2
(iii) 12(x² + 7x)2 – 8(x² + 7x)(2x – 1) + (2x – 1)2
(iv) 2(y2 + 2y)2 – 5(y2 + 2y) + 3
(v) 6(x² + 4x)2 – 11(x² + 4x)- 10
हलः
(i) 7(x + 2y)2 – 25(x + 2y) + 12
माना x + 2y = z
= 7z2– 25z + 12
= 7z2 – (21 + 4)z + 12 (∵ 7 × 12 = 7 × 2 × 2 × 3)
=7z2 – 21z – 4z + 12 = 7z(z – 3) – 4(z – 3)
= (z – 3)(7z – 4) =(x + 2y – 3)[7(x + 2y) – 4]
(x + 2y – 3)(7x + 14y – 4)

Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6

(ii) 8(a + 1)2 + 2(a + 1)(b + 2) – 15(b + 2)2
माना (a + 1) = x तथा (b + 2) = y
= 8x² + 20y – 15y2
= 8x² +(12 – 10)xy – 15y2 (∵ 15 × 8 = 120 = 2 × 2 × 2 × 3 × 5)
= 8x² + 12xy – 10xy – 15y2
= 4x(2x + 3y) – 5y (2x + 3y) = (2x + 3y)(4x – 5y)
⇒ [2(a + 1) + 3(b + 2)][4(a + 1) – 5(b + 2)]
= [2a + 2+ 3b + 6][4a + 4 – 5b – 10]
= [2a + 3b + 8][4a – 5b – 6]

(iii) 12(x² + 7x)2 – 8(x² + 7x)(2x – 1) + (2x – 1)2
माना x² + 7 x = m तथा 2x – 1 = n
12m2 – 8mn +n2
= 12m2 – (6 + 2)mn + n2 (∵ 12 × 1 = 12 = 2 × 2 × 3)
= 12m2 – 6mn – 2mn + n2
= 6m(2m – n) – n(2m – n)= (6m – n)(2m – n)
= [6(x² + 7x) – 2x + 1][2(x² + 7x) – 2x + 1]
= (6x² + 42x – 2x + 1)(2x² + 14x – 2x + 1)
= (6x² + 40x + 1)(2x² + 12x + 1)

(iv) 2(y2 + 2y)2 – 5(y2 + 2y) + 3
माना y2 + 2y = m
= 2m2 – 5m + 3 = 2m2 – (2 + 3)m + 3 (∵ 2 × 3 = 6)
= 2m2 – 2m – 3m + 3 = 2m(m – 1) – 3(m – 1)
= [(2m – 3)(m – 1)] = [2(y2 + 2y) – 3][y2 + 2y – 1]
=[2y2 + 4y – 3][y2 + 2y – 1]

(v) 6(x² + 4x)2 – 11(x² + 4x) – 10
माना x² + 4x = m
= 6m2 – 11m – 10
= 6m2 -(15 – 4)m – 10 (∵ 10 × 6 = 60 = 2 × 2 × 3 × 5)
= 6m2 – 15m + 4m – 10 = 3m(2m – 5) + 2(2m – 5)
= (2m – 5)(3m + 2) = [2(x² + 4x) – 5][3(x² + 4x) + 2]
= [2x² + 8x – 5][3x² + 12x + 2]

प्रश्न 19.
निम्न व्यंजकों के गुणनखण्ड ज्ञात कीजिए
Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6
हलः
Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6
Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6
Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6 Q 10

Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6

प्रश्न 20.
निम्न व्यंजकों के गुणनखण्ड ज्ञात कीजिए
Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6
हलः
Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6
Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6 Q 13
Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6

प्रश्न 21.
निम्न व्यंजकों के गुणनखण्ड ज्ञात कीजिए
Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6 Q 15
हलः
Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6

प्रश्न 22.
निम्न व्यंजकों के गुणनखण्ड ज्ञात कीजिए
(i) 9a3b + 41a2b2 + 20ab3
(ii) ax² + (4a2 – 3b)x – 12ab
(iii) 25x² + 10xy – 8y2
(iv) 4x² + 20xy + 25y2
हलः
(i) 9a2b + 41a2b2 + 20ab3 = ab[9a2 + 41ab + 20b2] (∵ 9 × 20 = 180 = 2 × 2 × 3 × 3 × 5)
= ab[9a2 + (36 + 5)ab + 20b2] = ab[9a2 + 36ab + 5ab + 20b2]
= ab[9a(a + 4b) + 5b(a + 4b)] = ab(9a + 5b)(a + 4b)]

(ii) ax² + (4a2 – 3b)x – 12ab = ax² + 4a2x – 3bx – 12ab = ax(x + 4a) – 3b(x + 4a)
= (x + 4a)(ax – 3b)

Balaji Class 9 Maths Solutions Chapter 5 Polynomial and their Factors Ex 5.6

(iii) 25x² + 10xy – 8y2 = 25x² + (20 – 10)xy – 8y2 (∵ 25 × 8 = 200 = 2 × 2 × 2 × 5 × 5)
= 25x² + 20xy – 10xy – 8y2 = 5x(5x + 4y) – 2y(5x + 4y)
= (5x + 4y)(5x – 2y)

(iv) 4x² + 20xy + 25y2 = 4x² + (10 + 10)xy + 25y2 (∵ 4 × 25 = 100 = 10 × 10)
= 4x² + 10xy + 10xy + 25y2 = 2x(2x + 5y) + 5y (2x + 5y)
= (2x + 5y)(2x + 5y)

Balaji Publications Mathematics Class 9 Solutions

Leave a Comment