UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data

UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data (समंकों का प्रदर्शन) are part of UP Board Solutions for Class 12 Economics. Here we have given UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data (समंकों का प्रदर्शन).

Board UP Board
Textbook NCERT
Class Class 12
Subject Economics
Chapter Chapter 25
Chapter Name Presentation of Data (समंकों का प्रदर्शन)
Number of Questions Solved 43
Category UP Board Solutions

UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data (समंकों का प्रदर्शन)

विस्तृत उत्तरीय प्रश्न (6 अंक)

प्रश्न 1
आँकड़ों के चित्रमय प्रदर्शन से आप क्या समझते हैं ? रेखाचित्र द्वारा आँकड़ों के प्रदर्शन का क्या महत्त्व है ? [2007]
या
समंकों के चित्रमय प्रदर्शन से आप क्या समझते हैं। आर्थिक अध्ययनों में इसके उपयोग बताइए। [2007]
या
दण्ड आरेख से आप क्या समझते हैं ? दण्ड आरेख के प्रकारों की विवेचना कीजिए। [2010, 15]
या
आँकड़ों के चित्र सहित प्रदर्शन की उपयोगिता (महत्त्व) की विवेचना कीजिए। [2013]
या
समंकों के रेखाचित्रीय निरूपण के लाभों का वर्णन कीजिए। [2014]
उत्तर:
सांख्यिकी का यह महत्त्वपूर्ण उद्देश्य है कि जटिल और विशाल आँकड़ों को इस रूप में प्रस्तुत करना कि वे समझने में सरल हो जाएँ। वर्गीकरण और सारणीयन के अन्तर्गत भी यही उद्देश्य निहित होता है। कभी-कभी अंकों का यह जमघट मस्तिष्क को भारी कर देता है। इसीलिए सांख्यिकीय आँकड़ों के चित्रमय प्रदर्शन की आवश्यकता समझी गयी।
संक्षेप में हम यह कह सकते हैं-“सांख्यिकीय आँकड़ों (समंकों) को रोचक एवं आकर्षक बनाने के लिए ज्यामितीय आकृतियों; जैसे-रेखाचित्र, दण्ड-चित्र, वृत्त चित्र, आयत चित्र अथवा मानचित्र के रूप में प्रदर्शित करने की क्रिया को आँकड़ों का चित्रमय प्रदर्शन कहते हैं।”

आँकडों के चित्रमय प्रदर्शन का महत्त्व या लाभ उपयोगिता)
आँकड़ों को जब चित्रों के माध्यम से निरूपित किया जाता है तब वे अधिक आकर्षक तथा समझने में सरल हो जाते हैं। ठीक ही कहा गया है–“एक चित्र हजार शब्दों के बराबर होता है।” रेखाचित्र द्वारा आँकड़ों के प्रदर्शन के महत्त्व या लाभ निम्नलिखित हैं

1. चित्र समंकों को सरल व सुबोध बनाते हैं – जब समंक लम्बे-चौड़े दिये होते हैं तब उन्हें समझना कठिन होता है। बड़े-बड़े समंकों को देखकर मस्तिष्क परेशान हो जाता है तथा कोई भी निष्कर्ष नहीं निकल पाता है। सांख्यिकीय आँकड़े चित्रों, आकृतियों व आलेखों द्वारा निरूपित किये जाने से सरल तथा सुबोध हो जाते हैं।

2. अधिक समय तक स्मरणीय – समंकों को देखकर याद करना कठिन होता है, परन्तु चित्रों की स्मृति मस्तिष्क में दीर्घकाल तक बनी रहती है।

3. विशेष योग्यता की आवश्यकता नहीं – सांख्यिकीय चित्रों को देखकर शिक्षित तथा सामान्य शिक्षित व्यक्ति भी उनका अर्थ समझ जाते हैं। चित्रों को समझाने के लिए सांख्यिकी के सूत्रों आदि का ज्ञान होना आवश्यक नहीं है।

4. समय व श्रम में बचत – चित्रों को समझने तथा उनसे निष्कर्ष निकालने में कम समय व कम श्रम की आवश्यकता होती है। चित्रों को देखकर ही समंक पर्याप्त मात्रा में समझ में आ जाते हैं।

5. आकर्षक एवं प्रभावशाली – रेखाचित्रे अपनी आकृति, सरलता वे सुन्दरता के कारण लोगों को अपनी ओर आकर्षित कर लेते हैं, जिसका स्थायी प्रभाव मस्तिष्क पर पड़ता है।

6. तुलना करने में सहायक – सांख्यिकीय आँकड़ों को चित्रों, आकृतियों, आलेखों द्वारा निरूपित करने से उनका तुलनात्मक अध्ययन सुविधाजनक हो जाता है। चित्रों को देखकर विभिन्न समंकों की तुलना सरलतापूर्वक की जा सकती है। वास्तव में चित्रों का सबसे अधिक महत्त्व समंकों की तुलना करने में ही दृष्टिगत होता है।

7. विज्ञापन में सहायक – सामान्यत: विज्ञापनों के साथ उपयुक्त चित्र बने होते हैं, जिनके माध्यम से विज्ञापन अधिक आकर्षक तथा बोधगम्य हो जाते हैं। आज के प्रतियोगिता के युग में विज्ञापनों का अत्यधिक महत्त्व है। रेखाचित्र विज्ञापन को अधिक आकर्षण व सौन्दर्य प्रदान करते हैं।

8. जनसाधारण को लाभ – आज के वैज्ञानिक युग में आँकड़े प्रस्तुत करने के लिए व्यापारी, अर्थशास्त्री, चिकित्साशास्त्री व सरकार रेखाचित्रों, विशेष रूप से स्तम्भ चार्टी व बिन्दु चित्रों का अधिक उपयोग करते हैं, जिनका लाभ जनसाधारण को भी मिलता है।
निष्कर्ष रूप में यह कहा जा सकता है कि सांख्यिकीय चित्रों की उपयोगिता सार्वभौमिक है।

प्रश्न 2
समंकों को रेखाचित्रों द्वारा प्रदर्शित करने की विभिन्न विधियाँ बताइए।
या
दण्ड-चित्र पर संक्षिप्त टिप्पणी लिखिए। [2011]
उत्तर:
सांख्यिकी में सामान्यत: निम्नलिखित प्रकार के रेखाचित्रों का प्रयोग किया जाता है

  1. एक विमा (विस्तार) वाले चित्र (One dimensional diagrams),
  2. दो विमा (विस्तार) वाले चित्र (Two dimensional diagrams),
  3. तीन विमा (विस्तार) वाले चित्र (Three dimensional diagrams),
  4. मानचित्र (Map diagrams) तथा
  5. चित्र-लेख (Pictograms)

एक विमा (विस्तार) वाले चित्र
जब समंक पद-माला विच्छिन्न होती है और उसके किसी एक गुण की तुलना करनी होती हैं तो एक विमा (विस्तार) वाले चित्रों की रचना की जाती है। इस प्रकार के चित्रों की रचना केवल चित्रों की लम्बाई में ही पदों के मूल्यों के अनुसार की जाती है। मोटाई सामान्यतः एकसमान होती है और पदों के मूल्यों से उसका कोई सम्बन्ध नहीं होता है। एक विमा (विस्तार) वाले चित्र दो प्रकार के होते हैं
(क) रेखाचित्र तथा
(ख) दण्ड-चित्र।

(क) रेखाचित्र (Line Diagram) – आँकड़ों के चित्रमय प्रदर्शन के अन्तर्गत यह चित्र प्रदर्शन में सबसे सरल है। इस चित्र का प्रयोग वहाँ किया जाता है, जहाँ किसी तथ्य से सम्बन्धित आँकड़ों की संख्या बहुत अधिक हो, लेकिन उनमें अन्तर बहुत कम हो। इस चित्र में समंकों को दर्शाने के लिए खड़ी रेखाओं का प्रयोग किया जाता है। इस चित्र का लाभ यह है कि समंकों के बीच तुलना आसानी से हो जाती है। यह चित्र आकर्षक नहीं दिखाई पड़ता, इसलिए इसका प्रयोग कम किया जाता है। (पाठ्यक्रम में इसको सम्मिलित नहीं किया गया है।)

(ख) दण्ड-चित्र (Bar Diagram) – इस चित्र का प्रयोग वहाँ किया जाता है, जहाँ किसी तथ्य से सम्बन्धित पद-मूल्यों की संख्या कम हो। दण्ड-चित्र की रचना के लिए एक निश्चित पैमाना निर्धारित किया जाता है और प्रत्येक पद-मूल्य को इस पैमाने के आधार पर बदलकर दण्डों की लम्बाई निश्चित की जाती है। इन चित्रों में सभी दण्डों की मोटाई का एक-समान होना आवश्यक है। दण्ड-चित्र पाँच प्रकार के होते हैं

(1) सरल दण्ड-चित्र – ये दो प्रकार से बनाये जा सकते हैं
(i) उदग्र दण्ड-चित्र तथा

  1. क्षैतिज दण्ड-चित्र।
  2. बहु-दण्ड-चित्र।
  3. द्वि-दिशा दण्ड-चित्र।
  4. अन्तर्विभक्त दण्ड-चित्र।
  5. प्रतिशत अन्तर्विभक्त दण्ड-चित्र।

दो विमा (विस्तार) वाले चित्र
दो विमा वाले चित्र उन चित्रों को कहते हैं जिनमें समंकों का चित्रण दो विस्तारों – ऊँचाई और चौड़ाई-को ध्यान में रखकर किया जाता है। इसीलिए इन्हें क्षेत्रफल चित्र (Area diagram) अथवा धरातल चित्र (Surface diagram) भी कहा जाता है। दो विमा (विस्तार) वाले चित्र निम्नलिखित प्रकार के होते हैं
(क) आयत चित्र,
(ख) वर्ग चित्र और
(ग) वृत्त चित्र।

(क) आयत चित्र (Rectangular Diagram) – आयत चित्र उस चित्र को कहते हैं, जिसमें आयत की लम्बाई तथा चौड़ाई दोनों का महत्त्व होता है और दोनों दो भिन्न-भिन्न तथ्यों को स्पष्ट करते हैं। उत्पादन लागत विश्लेषण तथा पारिवारिक बजटों के चित्रण में आयत चित्रों का प्रयोग किया जाता है।

आयत चित्रों के अन्तर्गत बारम्बारता वितरण को प्रदर्शित करने के लिए रेखाचित्रों का भी प्रयोग किया जाता है। ऐसे प्रदर्शन को आवृत्ति रेखाचित्र या बारम्बारता रेखाचित्र (Frequency graph) कहते हैं। ये अग्रलिखित प्रकार के होते हैं

  1. बारम्बारता आयत चित्र (Frequency Histogram),
  2. बारम्बारता बहुभुज (Frequency Polygon),
  3. बारम्बारता वक्र (Frequency Curve) तथा
  4. थी बारम्बारता वक्र (Cumulative Frequency Curve or Ogive Curve)

(ख) वर्ग चित्र (Square Diagram) – जब चित्र द्वारा प्रदर्शित की जाने वाली राशियों का विस्तार बहुत अधिक हो या जब समंकों के न्यूनतम व अधिकतम मूल्यों में अत्यधिक अन्तर हो तो उन्हें दण्ड-चित्रों द्वारा प्रदर्शित नहीं किया जा सकता। ऐसी स्थिति में वर्ग चित्र का ही प्रयोग किया जाता है। (पाठ्यक्रम में इसको सम्मिलित नहीं किया गया है।)

(ग) वृत्त चित्र (Circular Diagram) – वृत्त चित्र वर्ग चित्रों के विकल्प हैं अर्थात् जिन परिस्थितियों में वर्ग चित्रों का प्रयोग उचित रहता है, उन्हीं दशाओं में वृत्त चित्रों का भी उपयोग किया जा सकता है। दूसरे शब्दों में, जब प्रदर्शित की जाने वाली राशियों का विस्तार बहुत अधिक हो अथवा जब तथ्यों के न्यूनतम व अधिकतम मूल्य में पर्याप्त अन्तर हों तो वृत्त चित्र उपयुक्त रहते हैं।

प्रश्न 3
उदग्र दण्ड-चित्र से आप क्या समझते हैं ? निम्नलिखित आँकड़ों को ग्राफ पेपर पर उदग्र दण्ड-चित्र द्वारा प्रदर्शित कीजिए
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 1
उत्तर:
सरल दण्ड-चित्र दो प्रकार से बनाये जा सकते हैं
(i) उदग्र (Vertical) एवं
(i) क्षैतिज (Horizontal)।

जब दण्ड सीधे बनाये जाते हैं तो वे उदग्र दण्ड कहलाते हैं। इनको बनाते समय यह प्रयास करना चाहिए कि सबसे बड़ा दण्ड बायीं ओर अथवा दायीं ओर बने और सबसे छोटा दायीं ओर अथवा बायीं ओर बने।

1921 से 1961 ई० तक की जनसंख्या का चित्रमय प्रदर्शन
दिये गये आँकड़ों की सहायता से उदग्र दण्ड-चित्र निम्नवत् बनाया जा सकता है
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 2

प्रश्न 4
क्षैतिज दण्ड-चित्र से आप क्या समझते हैं ? 1921 से 2001 तक प्रत्येक जनगणना पर भारत की जनसंख्या निम्नवत है। क्षैतिज दण्ड-चित्र द्वारा इसे प्रदर्शित कीजिए

UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 3
उत्तर:
जब दण्ड खड़े न होकर लेटी दशा में बनाये जाते हैं तो उन्हें क्षैतिज दण्ड कहते हैं। इसमें मापदण्ड की रेखा ऊपर की ओर ली जाती है। इस प्रकार के दण्ड बनाते समय सबसे बड़ा दण्ड ऊपर और सबसे छोटा दण्ड नीचे आना चाहिए। परन्तु यदि आँकड़े विपरीत क्रम के अनुसार हों तो दण्ड भी उसी क्रम में बनाये जाने चाहिए।
1921 से 2001 तक की जनगणना पर भारत की जनसंख्या का चित्रमय प्रदर्शन
दिये गये आँकड़ों की सहायता से क्षैतिज दण्ड-चित्र निम्न प्रकार बनाया जा सकता है
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 4

विशेष – इस चित्र में आँकड़ों को क्षैतिज (Horizontal) रूप में प्रदर्शित किया गया है। आवश्यकता होने पर x और Y-अक्ष में परिवर्तन करके इसे उदग्र (Vertical) रूप में भी प्रदर्शित किया जा सकता है।

प्रश्न 5
बहुदण्ड चित्र से आप क्या समझते हैं ? निम्नलिखित तालिका में एक विद्यालय के साहित्य और विज्ञान वर्गों का 2005 में हाईस्कूल का परीक्षाफल दिया गया है
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 5
इन आँकड़ों को बहुदण्ड चित्र द्वारा प्रदर्शित कीजिए।
उत्तर:
जब किसी चित्र द्वारा एक गुण से अधिक या एक ही गुण की एक से अधिक अवस्थाओं को प्रदर्शित करने के लिए चित्र बनाते हैं, तब प्रत्येक गुण या अवस्था के लिए अलग-अलग दण्ड सटे- सटे बनाये जाते हैं और निर्मित चित्र बहुदण्ड चित्र कहलाता है। इसे मिश्रित दण्ड-चित्र भी कहते हैं। दण्डों में अन्तर स्पष्ट करने के लिए उन्हें अलग-अलग चिह्नों या रंगों से दर्शाया जाता है। यह ध्यान रखना चाहिए कि एक ही तथ्य से सम्बन्धित सभी वर्षों अथवा स्थानों के दण्ड-चित्रों में एक ही रंग अथवा चिह्न भरे जाएँ। दण्डों के रंगों या चिह्नों को स्पष्ट करने के लिए अलग से एक संकेतक बनाया जाता है जिसे चित्र के अन्दर ही दिखाया जाता है। एक अवस्था से सम्बन्धित विभिन्न समूहों के दण्ड-चित्र एक साथ मिलाकर बनाये जाते हैं, फिर थोड़ा रिक्त स्थान छोड़कर दूसरी अवस्था से सम्बन्धित विभिन्न समूहों के दण्ड-चित्र एक साथ मिलाकर बनाये जाते हैं। दिये गये ऑकड़ों की सहायता से बहुदण्ड चित्र निम्नवत् बनाया जा सकता है

एक विद्यालय के साहित्य और विज्ञान वर्ग का 1995 ई० के परीक्षाफल का बहुदण्ड चित्र
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 6

प्रश्न 6
द्वि-दिशा दण्ड-चित्र से आप क्या समझते हैं ? विभिन्न वर्षों में एक फर्म की लाभ-हानि (इ करोड़ में) का विवरण निम्नवत है। उपयुक्त चित्र द्वारा प्रदर्शित कीजिए
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 7
उत्तर:
इस प्रकार के दण्ड-चित्र से दो विपरीत गुण वाले तथ्यों का प्रदर्शन किया जाता है। दण्ड आधार रेखा के ऊपर व नीचे दोनों ओर बनाये जाते हैं जो विपरीत गुणों का प्रदर्शन करते हैं। आधार-रेखा के ऊपर
का भाग धनात्मक गुणों का और नीचे का भाग ऋणात्मक गुणों का प्रदर्शन करता है। इन्हें भी अलग-अलग रंगों या चिह्नों द्वारा स्पष्ट किया जाना चाहिए तथा एक संकेतक भी दिया जाना चाहिए।
दिये गये आँकड़ों की सहायता से उपयुक्त दण्ड-चित्र (द्वि-दिशा दण्ड-चित्र) अग्रवत् बनाया जा सकता है

1996 से 2001 ई० तक फर्म की लाभ और हानि का चित्रमय प्रदर्शन
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 8

प्रश्न 7
अन्तर्विभक्त दण्ड-चित्र से आप क्या समझते हैं ? एक विद्यालय में 1999-2000 एवं 2000-2001 के सत्र में विभिन्न वर्गों में छात्रों की संख्या निम्नवत थी। उपयुक्त चित्र (अन्तर्विभक्त दण्ड-चित्र) द्वारा प्रदर्शित कीजिए
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 9
उत्तर:
जब एक ही राशि कई विभागों में विभाजित हो तो कुछ राशि तथा उसके विभिन्न भागों को अन्तर्विभक्त दण्डों द्वारा प्रदर्शित कर सकते हैं। ये विभिन्न अंश कुल परिणाम के साथ अपना अनुपात भी प्रकट करते हैं और एक-दूसरे के साथ तुलनीय भी होते हैं। विभिन्न अंशों को विभिन्न रंगों या चिह्नों द्वारा प्रदर्शित किया जाता है।
दिये गये आँकड़ों की सहायता से उपयुक्त दण्ड-चित्र (अन्तर्विभक्त दण्ड-चित्र) अग्रवत् बनाया जा सकती है

1999-2000 एवं 2000-2001 के सत्र में विद्यालय के छात्रों की संख्या को अन्तर्विभक्त दण्ड-चित्र द्वारा प्रदर्शन
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 10

प्रश्न 8
अन्तर्विभक्त दण्ड-चित्र से आप क्या समझते हैं? वर्ष 2000 और 2001 में खाद्यान्नों के उत्पादन को निम्नलिखित सारणी में दिखाया गया है। प्रतिशत अन्तर्विभक्त दण्ड-चित्र द्वारा उत्पादन को प्रदर्शित कीजिए
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 11
उत्तर:
पद-मूल्यों की सापेक्षिक तुलना के लिए प्रतिशत अन्तर्विभक्त दण्ड-चित्र का उपयोग किया जाता है। इस प्रकार के चित्र में पद के सम्पूर्ण मूल्य को 100 मानकर उसके विभिन्न अंशों को प्रतिशत के रूप में बदल लिया जाता है। इसके पश्चात् उन प्रतिशतों को संचयी बना लिया जाता है। मापदण्ड के आधार पर पूर्ण दण्ड में से अंश काट दिये जाते हैं और अलग-अलग अंशों को भिन्न-भिन्न रंगों या चिह्नों द्वारा प्रदर्शित किया जाता है। इस दण्ड-चित्र में प्रत्येक दण्ड की लम्बाई और चौड़ाई बराबर होती है। केवल इसके अन्तर्विभाजन में प्रतिशत की भिन्नता के अनुसार अन्तर होता है। इस दण्ड-चित्र का सबसे बड़ा गुण यह होता है कि समग्र के अंशों को प्रतिशत में व्यक्त किये जाने के कारण उनकी तुलना करना सरल होता है, किन्तु इस दण्ड-चित्र में कुल सामग्री की तुलना करना सम्भव नहीं होता, क्योंकि सभी राशियों के लिए बराबर-बराबर लम्बाई व चौड़ाई के दण्ड खींचे जाते हैं।
प्रश्न में दी गयी सारणी को निम्नवत् संचयी प्रतिशत सारणी के रूप में बदलेंगे
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 12
प्रतिशत अन्तर्विभक्त दण्ड-चित्र द्वारा सभंकों का प्रदर्शन
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 13

प्रश्न 9
बारम्बारता वक्र से आप क्या समझते हैं? नीचे दी गयी सारणी की सहायता से आयत चित्र, बारम्बारता बहुभुज तथा बारम्बारता वक़ निरूपित कीजिए
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 14
उत्तर:
वर्गीकृत बारम्बारता बण्टन के वर्ग – अन्तरालों के मध्य-बिन्दुओं (x) को ४-अक्ष पर तथा बारम्बारता (f) को Y-अक्ष पर लेकर बिन्दुओं (x, f) को अंकित करने के बाद उन्हें सरल रेखाओं से क्रमशः मिलाने से जो आकृति बनती है, उसको बारम्बारता बहुभुज कहते हैं। दूसरे शब्दों में, आयत चित्र में, प्रत्येक दो क्रमागत आयतों की ऊपरी भुजाओं के मध्य-बिन्दुओं को एक रेखा-खण्ड द्वारा मिलाने से जो आकृति प्राप्त होती है, उसे बारम्बारता बहुभुज कहते हैं।

बहुभुज को पूर्ण करने के लिए प्रत्येक सिरे पर एक शुन्य बारम्बारता के वर्ग–अन्तराल की कल्पना की जाती है। पहले वर्ग के मध्य-बिन्दु को पहले वर्ग-अन्तराल से पूर्व शून्य बारम्बारता के वर्ग-अन्तराल की कल्पना करके उसके मध्य-बिन्दु से मिलाया जाता है। बाद वाले वर्ग के मध्य-बिन्दु को बाद वाले वर्ग-अन्तराल के बाद शून्य बारम्बारता वाले वर्ग-अन्तराल की कल्पना करके उसके मध्य-बिन्दु से मिलाया जाता है। यदि कल्पित वर्ग – अन्तराल मानना उचित न लगता हो तो पहले बिन्दु को पहले वर्ग-अन्तराल की निम्न सीमा से और अन्तिम बिन्दु को बाद वाले वर्ग-अन्तराल की ऊपरी सीमा से मिला दिया जाता है।

उपर्युक्त विवेचना के अनुसार बारम्बारता बहुभुज बनाने के दो तरीके हुए

(i) मध्य-बिन्दु और बारम्बारता को अंकित करके और
(ii) पहले आयत चित्र बनाकर और उसके बाद मध्य-बिन्दुओं को मिलाकर।

बारम्बारता बहुभुज में मध्य-बिन्दुओं को मिलाकर खींची गयी रेखा में कोणीयता आ जाती है। इस कोणीय स्वरूप को समाप्त करने के लिए मध्य-बिन्दुओं का आश्रय लेते हुए मुक्तहस्त (Freehand) से खींची गयी एक तदनुरूप रेखा को बारम्बारता वक्र कहते हैं। वर्ग–अन्तरालों के मध्य-बिन्दुओं को निर्दिष्ट करने वाली सारणी निम्नवत् बनायी जा सकती है
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 15
दिये गये आँकड़ों की सहायता से आयत-चित्र, बारम्बारता बहुभुज और बारम्बारता वक्र निम्नवत् बनाया जा सकता है
आयत-चित्र, बारम्बारता बहुभुज और बारम्बारता वक्र का चित्रमय अंकन
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 16

प्रश्न 10
संचयी बारम्बारता वक्र से आप क्या समझते हैं? नीचे दी गयी बारम्बारता सारणी से एक संचयी बारम्बारता वक्र खींचिए
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 17
उत्तर:
संचयी बारम्बारता वक्र संचयी बारम्बारता बण्टन का एक आलेख होता है। यदि वर्ग-अन्तरालों की ऊपरी सीमाओं को ४-अक्ष पर और उनकी संगत संचयी बारम्बारताओं को Y-अक्ष पर लेते हुए बिन्दुओं को अंकित किया जाए और फिर उन्हें क्रमशः सरल रेखाओं से मिला दिया जाए तो जो आकृति बनेगी वह संचयी बारम्बारता बहुभुज होगी। परन्तु यदि अंकित बिन्दुओं को मिलाते हुए एक मुक्त हस्त निष्कोण वक्र खींचा जाता है तो इसे संचयी बारम्बारता वक्र या तोरण या ओजाइव वक्र कहते हैं। संचयी बारम्बारता वक्र की सहायता से माध्यिका (Median) भी ज्ञात की जा सकती है। संचयी बारम्बारता वक्र दो प्रकार के होते हैं

(1) ‘से कम वाले – इसके अन्तर्गत संचयी बारम्बारता का बिन्दु वर्गान्तर की ऊपरी सीमा के आधार पर अंकित किया जाता है। इसके बाद इन बिन्दुओं को मिलाकर मुक्त हस्त रेखा से वक्र बना दिया जाता है। यह वक्र नीचे से ऊपर की ओर उठता हुआ होता है।

(2) ‘से अधिक वाले – इसके अन्तर्गत संचयी बारम्बारती को बिन्दु वर्गान्तर की निचली सीमा के आधार पर अंकित किया जाता है। इसके बाद इन बिन्दुओं को मिलाकर मुक्त हस्त से वक्र बना दिया जाता है, जो क्रमशः ऊपर से नीचे की ओर गिरता हुआ होता है। दिये गये आँकड़ों की सहायता से सर्वप्रथम बारम्बारता सारणी निम्नलिखित रूप में तैयार की जाएगी।
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 18
अब ग्राफ-पेपर पर बिन्दु (10, 7), (20, 17), (30, 40), (40, 91), (50, 97) तथा (60, 100) अंकित किये जाएँगे। अब इन अंकित बिन्दुओं को मिलाते हुए मुक्त हस्त से एक निष्कोण वक्र खींचा जाएगा।
अभीष्ट संचयी बारम्बारता वक्र या तोरण निम्नवत् होगा
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 19

प्रश्न 11
वृत्त चित्रों से आप क्या समझते हैं? ये कितने प्रकार के होते हैं? संक्षेप में उनका विवरण दीजिए।
या
वृत्त चित्र पर संक्षिप्त टिप्पणी लिखिए। [2011]
उत्तर:
आँकड़ों का तुलनात्मक अध्ययन करने के लिए वृत्तों या चित्रों का भी प्रयोग किया जाता है। जिन परिस्थितियों में वर्ग चित्रों का प्रयोग उपयुक्त होता है, उन्हीं में वृत्त चित्रों का प्रयोग किया जा समंकों (आँकड़ों) का प्रदर्शन 319 सकता है। दूसरे शब्दों में, जब प्रदर्शित की जाने वाली राशियों का विस्तार बहुत अधिक हो अथवा जब तथ्यों के अधिकतम व न्यूनतम मूल्य में पर्याप्त अन्तर हो तो वृत्त चित्र उपयुक्त होते हैं। वृत्त का क्षेत्रफल अर्द्धव्यास अथवा त्रिज्या पर निर्भर करता है। इसलिए वर्गों की भुजाओं के ही अनुपात से अर्द्धव्यास लेकर वर्गों के स्थान पर वृत्त भी बनाये जा सकते हैं। यह ध्यान रखना आवश्यक है कि सभी वृत्त केन्द्र एक सरल क्षैतिज रेखा में होने चाहिए तथा सभी वृत्तों के बीच समान दूरी छोड़ी जाए।

वर्गों के स्थान पर वृत्त बनाने के दो लाभ होते हैं। एक तो वृत्तों का बनाना सरल होता है और दूसरे वे देखने में अच्छे भी लगते हैं। इनके द्वारा आँकड़ों के विभाजन को उचित रूप में प्रदर्शित किया जा सकता है। वृत्तों का प्रयोग प्रायः विश्व के विभिन्न देशों के उत्पादन, जनसंख्या आदि को प्रदर्शित करने के लिए किया जाता है।

वृत्त चित्रों के प्रकार-वृत्त चित्र दो प्रकार के होते हैं
(क) साधारण वृत्त चित्र तथा
(ख) अन्तर्विभक्त वृत्त चित्र।

(क) साधारण वृत्त चित्र – साधारण वृत्त चित्र बनाने के लिए सबसे पहले समंकों का वर्गमूल लिया जाता है। इसके बाद इस वर्गमूल को किसी सामान्य संख्या से भाग देकर लघुरूप में बदल देते हैं। वर्गमूलों के इस छोटे रूप को ही त्रिज्या या अर्द्धव्यास मानकर वृत्त बनाते हैं। आवश्यकता पड़ने पर इन्हें अनुपात के हिसाब से छोटा-बड़ा किया जा सकता है।

वृत्त चित्र का पैमाना निकालने के लिए वृत्त का क्षेत्रफल ज्ञात करना होता है। वृत्त का क्षेत्रफल I2 होता है।

यहाँ, π(Pie) मूल्य सदैव [latex]\frac { 22 }{ 7 }[/latex] होता है, r वृत्त का अर्द्धव्यास है। एक वृत्त का क्षेत्रफल निकल आने पर 1 वर्ग सेमी के लिए मूल्य निकाल लेंगे, यही पैमाना होगा।

उदाहरण – यदि किसी वृत्त का अर्द्धव्यास 2 सेमी है और उसमें ₹1,760 दिखाये गये हैं तो पैमाना निकालने की पद्धति इस प्रकार होगी
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 20

(ख) अन्तर्विभक्त वृत्त चित्र या कोणिक चित्र – वृत्त-चित्रों की बहुत बड़ी उपयोगिता उनके अन्तर्विभाजन की सुविधा के कारण है। वर्गों में यह सुविधा नहीं होती। वृत्त के केन्द्र पर 360° का कोण होता है। सम्पूर्ण को 360° मानकर उसके विभागों के लिए विभिन्न अंशों के कोणों की गणना कर ली जाती है। इस प्रकार सभी विभागों के कोणों का जोड़ 360° होगा। इन विभिन्न निश्चित किये हुए अंशो के अनुसार कोण बनाते हुए रेखाएँ परिधि से मिला दी जाती हैं।

प्रश्न 12
नीचे सारणी में दी गयी सूचना को साधारण वृत्त-चित्र के रूप में प्रस्तुत कीजिए
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 21
उत्तर:
सारणी में दिये गये आँकड़ों को साधारण वृत्त-चित्र के रूप में प्रदर्शित करने के लिए निम्नलिखित रूप में परिकल्पित करेंगे
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 22
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 23
अब इन राशियों को वृत्त का अर्द्धव्यास या त्रिज्या मानकर इनसे वृत्तों की रचना करेंगे।
दिये गये आँकड़ों का साधारण वृत्त चित्र के रूप में प्रदर्शन

प्रश्न 13
नयी दिल्ली में किसी मकान को बनाने में आये विभिन्न मदों में व्यय के प्रतिशत आँकड़े निम्नलिखित सारणी में प्रदर्शित हैं
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 24
उत्तर:
खर्च के प्रतिशत को वृत्त के संगत कोणों में बदलने की गणना निम्नलिखित रूप में की जाती है
∵100 प्रतिशत बराबर है 360° के
∴ 1 प्रतिशत बराबर होगा [latex]\frac { { 360 }^{ \circ } }{ 100 }[/latex] = 3.6° के
अत: उपर्युक्त सारणी संगत कोणों के अंशों के आधार पर इस प्रकार बनायी जा सकती है
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 25
सबसे पहले एक वृत्त खींचेंगे। वृत्त के केन्द्र पर 90° का कोण बनाएँगे। श्रम के लिए इसके बाद घड़ी में सूई के विपरीत 54°, 72°, 54°, 36° तथा 54° के कोण अन्य सामग्रियों के लिए बनाते चले जाएँगे। प्रत्येक उपविभाग को अलग-अलग चिह्नों से प्रदर्शित करेंगे।

दिये गये आँकड़ों का अन्तर्विभक्त वृत्त-चित्र द्वारा प्रदर्शन
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 26

लघु उत्तरीय प्रश्न (4 अंक)

प्रश्न 1
आँकड़ों के चित्रमय प्रदर्शन करते समय अथवा रेखाचित्र बनाते समय क्या-क्या सावधानियाँ रखी जानी चाहिए?
या
आँकड़ों के चित्रमय प्रदर्शन के सामान्य नियमों पर संक्षिप्त टिप्पणी लिखिए।
उत्तर:
रेखाचित्र बनाते समय निम्नलिखित सावधानियाँ रखी जानी चाहिए

  1. चित्र बनाने से पूर्व चित्र के लिए पैमाना निर्धारित कर लेना चाहिए जो सरल एवं स्पष्ट हो।
  2. रेखाचित्र बनाते समय उसके आकार की ओर विशेष ध्यान देने की आवश्यकता होती है। चित्र ने तो अधिक छोटा और न ही अधिक बड़ा होना चाहिए। चित्र का आकार कागज के आकार के ऊपर निर्भर करता है। अत: जिस कागज पर रेखाचित्र बनाया जा रहा है, उसी के अनुपात को ध्यान में रखकर रेखाचित्र का निर्माण किया जाना चाहिए।
  3. चित्रे आकर्षक होना चाहिए। अत: चित्र बनाते समय इस बात की पूरी सावधानी रखनी चाहिए कि चित्र स्वच्छ तथा प्रभावशाली हो, जिससे देखने वालों का मस्तिष्क चित्र की ओर शीघ्र ही आकर्षित हो जाए।
  4. रेखाचित्रों की शुद्धता की ओर ध्यान रखना परम आवश्यक है। चित्रों को पटरी, परकार तथा पेन्सिल व चाँदे आदि की सहायता से सावधानीपूर्वक बनाना चाहिए। चित्र बनाने के लिए ग्राफ पेपर का प्रयोग उत्तम होता है।
  5. रेखाचित्र में सरलता का गुण होना चाहिए, जिससे कि देखते ही चित्र का अर्थ एवं निष्कर्ष समझ में आ सके।
  6. रेखाचित्रों के पास ही वह सारणी (पैमाना) भी बनी होनी चाहिए, जिसके आधार पर रेखाचित्र बनाया गया है।
  7. रेखाचित्र बनाते समय, समय तथा साधनों का ध्यान होना भी आवश्यक है। चित्र मितव्ययी होने चाहिए।
  8. यदि समंकों को स्तम्भ चित्रों में दर्शाया जा रहा हो तब स्तम्भों में अन्तर की दूरी समान होनी चाहिए।
  9. रेखाचित्र बनाते समय कागज पर चारों ओर पर्याप्त स्थान छोड़ना चाहिए जिससे उसका शीर्षक, पैमाना, संकेत आदि प्रदर्शित किये जा सकें।
  10. चित्र को अधिक स्पष्ट तथा आकर्षक बनाने के लिए रंगों का उपयोग भी किया जा सकता है।
  11. प्रत्येक चित्र के ऊपर पूर्ण, स्पष्ट संक्षिप्त शीर्षक दिया जाना चाहिए। इससे यह स्पष्ट हो जाता है कि चित्र में क्या प्रदर्शित किया जा रहा है।
  12. सांख्यिकीय आँकड़ों के प्रदर्शन के लिए अनेक प्रकार के चित्र बनाये जाते हैं, जिनकी अलग-अलग विशेषताएँ होती हैं; अतः समंकों के विश्लेषण के बाद उनके लिए कौन-सा चित्र उचित होगा, यह विचार करके ही चित्रों को बनाना चाहिए।

प्रश्न 2
चित्रमय प्रदर्शन की सीमाओं पर टिप्पणी लिखिए। [2007]
उत्तर:
सांख्यिकीय चित्रों में अनेक गुण होने के बावजूद इनकी कुछ सीमाएँ भी होती हैं। चित्रमय प्रदर्शन की कुछ सीमाएँ निम्नलिखित हैं

  1. चित्रों द्वारा समंकों का पूर्ण निरूपण नहीं होता। चित्र तो समंकों का अनुमानित रूप में प्रदर्शन करते हैं; अतः वे उन्हीं क्षेत्रों में उपयुक्त होते हैं जहाँ किसी विषय की सरल रूप में सामान्य व्यक्तियों को जानकारी देनी आवश्यक हो।
  2. चित्रों की सहायता से संख्याओं के सूक्ष्म अन्तर को दिखाना असम्भव है।
  3. चित्रों की सहायता से तुलना तभी उपयुक्त हो सकती है जब वे समंकों के समान गुण के आधार पर बनायें जाएँ।
  4. केवल चित्र का कोई महत्त्व नहीं होता, वरन् चित्रों के द्वारा आपसी तुलनात्मक अध्ययन सम्भव होता है।
  5. चित्रों द्वारा पूर्ण सत्य निष्कर्ष नहीं निकाले जा सकते। ये तो निष्कर्ष की ओर पहुँचने के साधन मात्र हैं।
  6. चित्रों द्वारा बहुमुखी विशेषताओं का प्रदर्शन नहीं हो सकता। वर्गीकरण व सारणीयन के द्वारा अनेक प्रकार की सूचनाएँ या विशेषताएँ प्रदर्शित की जा सकती हैं, लेकिन चित्रों के द्वारा किसी एक विशेषता का ही प्रदर्शन किया जा सकता है।
  7. अनुचित एवं अशुद्ध चित्र बनाकर उनका आसानी से दुरुपयोग किया जा सकता है।
  8. प्रत्येक प्रकार के अनुसन्धान में चित्र नहीं बनाये जा सकते। यदि बनाये भी जाएँगे तो कोई स्पष्ट भाव व्यक्त नहीं करेंगे।
  9. यदि चित्र बनाने वाले को विषय तथा चित्र बनाने के नियमों का सम्यक् ज्ञान नहीं है तो उसके द्वारा बनाये गये चित्रों से स्थिति का वास्तविक ज्ञान नहीं हो सकेगा।

प्रश्न 3
निम्नलिखित बारम्बारता बंटन के लिए वर्ग-चिह्न ज्ञात करके बारम्बारता बहुभुज बनाइए
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 27
हल:
दिये गये आँकड़ों से बारम्बारता बहुभुज बनाने के लिए सबसे पहले आँकड़ों से मध्य-बिन्दु और अंकित किये जाने वाले बिन्दु निम्नवत् ज्ञात करेंगे
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 28
वर्ग-अन्तराल के मध्य-बिन्दुओं को X-अक्ष पर और बारम्बारता को Y-अक्ष पर लेते हुए उपर्युक्त अंकित किये जाने वाले बिन्दुओं को ग्राफ पेपर पर अंकित करेंगे। इसके बाद इन अंकित बिन्दुओं को सरल रेखा द्वारा मिला देंगे। अब दोनों सिरों को शून्य बारम्बारता के काल्पनिक वर्ग-अन्तराल के मध्य बिन्दुओं से मिला देंगे। अभीष्ट बारम्बारता बहुभुज निम्नवत् बनेगा
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 29

प्रश्न 4
निम्नलिखित आँकड़ों से पहले आयत चित्र बनाइए और फिर उसी ग्राफ पर बारम्बारता बहुभुज और बारम्बारता वक़ बनाइए वर्ग- अन्तराल (0-10 10-20 20-30 30-40 40-50 50-60
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 30
उत्तर:
दिये गये आँकड़ों से बारम्बारता बहुभुज बनाने के लिए सबसे पहले आँकड़ों से मध्य-बिन्दु और अंकित किये जाने वाले बिन्दु निम्नवत् ज्ञात करेंगे
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 31
वर्ग – अन्तराल को X – अक्ष पर और बारम्बारता को Y – अक्ष पर लेते हुए प्रत्येक वर्ग-अन्तराल के लिए X-अक्ष पर एक आयत का निर्माण करेंगे। इस प्रकार जितने भी वर्ग–अन्तराल होंगे, उतनी ही
आयतों का निर्माण होगा। अब इन आयतों के मध्य बिन्दुओं तथा अंकित किये जाने वाले बिन्दुओं को सीधी रेखा द्वारा मिला देंगे। इसके बाद मुक्त हस्त से एक रेखा इन सीधी रेखाओं के तदनुरूप बना देंगे। अभीष्ट आयत चित्र, बारम्बारता बहुभुज और बारम्बारता वक्र निम्नवत् बनेगा
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 32

प्रश्न 5
अग्रलिखित सारणी में दिये गये ‘से कम बारम्बारता वितरण को ‘से अधिक बारम्बारता वितरण में परिवर्तित कीजिए और उससे संचयी बारम्बारता वक्र बनाइए
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 33
हल:
दिये गये प्रश्न में से कम’ के अनुसार संचयी बारम्बारता दी गयी हैं। इन आँकड़ों को ‘से अधिक’ संचयी बारम्बारता में बदलने के लिए निम्नवत् सारणी बनानी होगी
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 34
अब ग्राफ पेपर पर बिन्दुओं (0, 200), (20, 160), (40, 110) , (60, 50), (80, 10) को अंकित करेंगे। अब इन अंकित् बिन्दुओं को मिलाते हुए मुक्त हाथों से एक निष्कोण वक्र खीचेंगे। यही अभीष्ट संचयी बारम्बारता वक़ या तोरण होगा
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 35

प्रश्न 6
एक कक्षा में निम्नलिखित परिणाम को उपयुक्त चित्र द्वारा दिखाइए
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 36
हल:
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 37

प्रश्न 7
निम्नलिखित सारणी में एक डेरी फार्म की 100 गायों का वर्गीकरण उनके एक दिन के दूध के अनुसार दिया गया है
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 38
हल:
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 39

प्रश्न 8
निम्नलिखित सारणी में एक डेरी फार्म की 100 गायों का वर्गीकरण उनके एक दिन के दूध के अनुसार किया गया है
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 40
उपर्युक्त से बारम्बारता बहुभुज बनाइए।
हुल:
यहाँ वर्ग-अन्तराल 4-6 का मध्यमान = [latex]\frac { 4+6 }{ 2 }[/latex] = 5। इसी प्रकार अन्य वर्ग–अन्तरालों के मध्यमान क्रमशः 7, 9, 11, 13 तथा 15 हुए।

4-6 वर्ग-अन्तराल के निकटस्थ नीचे का वर्ग-अन्तराल 2-4 हुआ, जिसकी बारम्बारता शून्य है। इसी प्रकार 14-16 के निकटस्थ ऊपर का वर्ग-अन्तराल 16-18 है, जिसकी बारम्बारता भी शून्य है। इनके मध्यमान क्रमानुसार 3 एवं 17 हैं। इसके लिए दी गयी सारणी को निम्नवत् बदल लेते हैं
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 41
प्रथम विधि
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 42
द्वितीय विधि
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 43

प्रश्न 9
10 विद्यार्थियों द्वारा गणित (X) व विज्ञान (Y) में प्राप्त अंक नीचे दिये हुए हैं। इन दोनों विषयों में प्राप्त अंकों के बीच सम्बन्ध की जाँच ग्राफ की सहायता से कीजिए
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 44
हुल:
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 45

प्रश्न 10
निम्नलिखित सारणी को बारम्बारता वक्र निरूपित कीजिए
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 46
हुल:
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 47

प्रश्न 11
निम्नलिखित सारणी द्वारा संचयी बारम्बारता आलेख निरूपित कीजिए
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 48
हुल:
सर्वप्रथम संचयी बारम्बारता सारणी बनाएँ
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 49
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 50

अतिलघु उत्तरीय प्रश्न (2 अंक)

प्रश्न 1
रेखाचित्रों द्वारा आँकड़ों के प्रदर्शन के चार महत्त्व बताइए। [2007]
उत्तर:
रेखाचित्रों द्वारा आँकड़ों के प्रदर्शन के चार महत्त्व निम्नलिखित हैं

  1. रेखाचित्र समंकों के प्रदर्शन का आकर्षक एवं प्रभावशाली साधन है।
  2. रेखाचित्र समंकों को सरल एवं बोधगम्य बनाते हैं।
  3. रेखाचित्रों के द्वारा समंकों की तुलना सरलता से की जा सकती है।
  4. रेखाचित्रों से समय एवं श्रम की बचत होती है।

प्रश्न 2
क्षैतिज दण्ड-चित्र किस प्रकार बनाये जाते हैं?
उत्तर:
जब दण्ड खड़े न होकर लेटी दशा में बनाये जाते हैं तो उन्हें क्षैतिज दण्ड कहते हैं। क्षैतिज दण्ड-चित्र बनाते समय सबसे बड़ा दण्ड ऊपर और सबसे छोटा दण्ड नीचे आना चाहिए। परन्तु यदि समंक विपरीत क्रम में हो तो दण्ड भी उसी क्रम में बनाये जाते हैं। क्षैतिज दण्ड चित्र में मापदण्ड की रेखा ऊपर की ओर ली जाती है।

प्रश्न 3
आँकड़ों के चित्रमय प्रदर्शन के कोई दो लाभ लिखिए। [2014, 15]
उत्तर:
दो लाभों के लिए विस्तृत उत्तरीय प्रश्न संख्या 1 के अन्तर्गत देखें।

प्रश्न 4
बारम्बारता वक्र किस प्रकार बनाये जाते हैं?
उत्तर:
यदि बारम्बारता बहुभुज में प्राप्त मध्यमान बिन्दुओं को सरल रेखा से न मिलाकर निष्कोण कर दिया जाए तो बारम्बारता वक्र बन जाता है। बारम्बारता वक्र के लिए यह आवश्यक नहीं है कि वह बारम्बारता बहुभुज के प्रत्येक शीर्ष से होकर जाए, परन्तु जहाँ तक हो सके, उसे बारम्बारता बहुभुज के प्रत्येक शीर्ष से होकर जाना चाहिए।

प्रश्न 5
संचयी बारम्बारता वक्र क्या है? [2011]
या
संचयी आवृत्ति वक्र क्या है? [2011]
उत्तर:
संचयी बारम्बारता वक्र संचयी बारम्बारता बण्टन का एक आलेख होता है। यदि वर्ग अन्तरालों की ऊपरी सीमाओं को x-अक्ष पर और उनकी संगत संचयी बारम्बारताओं को y-अक्ष पर लेते हुए बिन्दुओं को अंकित किया जाए और फिर उन्हें क्रमशः सरल रेखाओं से मिला दिया जाए तो जो आकृति बनेगी, वह संचयी बारम्बारता बहुभुज होगी। परन्तु यदि अंकित बिन्दुओं को मिलाते हुए एक मुक्त हस्त निष्कोण वक्र खींचा जाता है तो इसे संचयी बारम्बारता वक्र या तोरण या ओजाइव (संचयी आवृत्ति) वक्र कहते हैं।

प्रश्न 6
दण्ड चित्रों के किन्हीं दो प्रकारों को संक्षेप में लिखिए।
उत्तर:
दण्ड चित्रों के दो प्रकार निम्नलिखित हैं – (1) उदग्र (Vertical) (2) क्षैतिज (Horizontal)

  1. उदग्र दण्ड चित्र – जब दण्ड सीधे बनाये जाते हैं तो वे उदग्र दण्ड चित्र कहलाते हैं। इसको बनाते समय यह प्रयास करना चाहिए कि सबसे बड़ा दण्ड बायीं ओर अथवा दायीं ओर बने।
  2. क्षैतिज दण्ड चित्र – जब दण्ड खड़े न होकर लेटी दशा में बनाये जाते हैं तो उन्हें क्षैतिज दण्ड चित्र कहते हैं।

निश्चित उत्तरीय प्रश्न (1 अंक)

प्रश्न 1
आयत चित्र किसे कहते हैं?
उत्तर:
किसी बारम्बारता बंटन में वर्ग-अन्तराल और संगत बारम्बारता को किसी आयत की दो संलग्न भुजाएँ मानकर जो आयत बनाते हैं उन्हें आयत चित्र कहते हैं।

प्रश्न 2
दण्ड चित्रों के किन्हीं दो प्रकारों का नामोल्लेख कीजिए।
उत्तर:
(1) सरल दण्ड चित्र- ये दो प्रकार के होते हैं –  (i) उदग्र दण्ड चित्र, (ii) क्षैतिज दण्डचित्र।
(2) बहु दण्ड चित्र।

प्रश्न 3
बारम्बारता बहुभुज किसे कहते हैं?
उत्तर:
दो या दो से अधिक बंटनों के तुलनात्मक अध्ययन के लिए जो बहुभुज बनाये जाते हैं, ऐसे बहुभुज में वर्ग–अन्तराल का मध्यमाने ही उस वर्ग के सभी आँकड़ों का प्रतिनिधित्व करता है।

प्रश्न 4
द्विविमा चित्रों से आप क्या समझते हैं?
उत्तर:
द्विविमा चित्र-द्विविमा चित्र उन चित्रों को कहते हैं, जिनमें समंकों का चित्रण दो विस्तारों ऊँचाई और चौड़ाई को ध्यान में रखकर किया जाता है, इसलिए इन्हें क्षेत्रफल चित्र अथवा धरातल चित्र भी कहा जाता है।

प्रश्न 5
निम्नलिखित चित्र की सहायता से नीचे दिये गये प्रश्नों के उत्तर दीजिए
UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data 51
(i) अधिकतम बारम्बारता वाला वर्ग- अन्तराल बताइए।
उत्तर:
अधिकतम बारम्बारता वाला वर्ग-अन्तराल 60-70 है।

(ii) वह वर्ग-अन्तराल बताइए जिसकी बारम्बारता 15 है।
उत्तर:
वह वर्ग-अन्तराल 20-30 से 40-50 है जिसकी बारम्बारता 15 है।

(iii) न्यूनतम वर्ग- अन्तराल वाला वर्ग-अन्तराल बताइए।
उत्तर:
न्यूनतम वर्ग–अन्तराल वाला वर्ग-अन्तराल 30-40 है।

(iv) वह वर्ग-अन्तराल बताइए जिसकी संचयी बारम्बारता 60 है।
उत्तर:
वह वर्ग – अन्तराल (50-60) है जिसकी संचयी बारम्बारता 60 है।

(v) वर्ग- अन्तराल (50-60) की बारम्बाता बताइए।
उत्तर:
वर्ग-अन्तराल (50-60) की बारम्बारता 25 है।

बहुविकल्पीय प्रश्न (1 अंक)

प्रश्न 1
किसी आयत स्तम्भ के शीर्ष भुजाओं के मध्य बिन्दुओं को मुक्त-हस्त वक्र से मिलाने पर प्राप्त आलेख होगा
(क) तोरण
(ख) बारम्बारता वक्र
(ग) बारम्बारता बहुभुज
(घ) स्तम्भ चार्ट
उत्तर:
(क) तोरण।

प्रश्न 2
यदि बारम्बारता बहुभुज में प्राप्त मध्यमान बिन्दुओं को सरल रेखा से न मिलाकर निष्कोण कर दिया जाए तो प्राप्त आलेख होगा
(क) बारम्बारता वक्र
(ख) तोरण
(ग) स्तम्भ चार्ट
(घ) बारम्बारता बहुभुज
उत्तर:
(क) बारम्बारता वक्र।

प्रश्न 3
सांख्यिकी में किसी वर्ग की ऊपरी सीमा तथा निचली सीमा के अन्तर को कहते हैं [2009]
(क) वर्ग-बारम्बारता
(ख) वर्ग-अन्तराल
(ग) मध्य बिन्दु
(घ) वर्ग सीमाएँ
उत्तर:
(ख) वर्ग-अन्तराल।

प्रश्न 4
किसी बारम्बारता बंटन में वर्ग- अन्तराल और संगत बारम्बारता से बना आलेख होगा
(क) स्तम्भ चित्र
(ख) आयत चित्र
(ग) बारम्बारता बहुभुज
(घ) बारम्बारता वक्र
उत्तर:
(ख) आयत चित्र।

प्रश्न 5
जब X-अक्ष पर बराबर-बराबर स्थान छोड़कर एकसमान चौड़ाई के दण्ड खींचे जाते हैं, तो उसे कहते हैं
(क) स्तम्भ चार्ट
(ख) आयत चित्र
(ग) बारम्बारता बहुभुज
(घ) बारम्बारता वक्र
उत्तर:
(क) स्तम्भ चार्ट।

प्रश्न 6
निम्नलिखित में से कौन-सा द्विविमीय चित्र है? [2002]
(क) आयत चित्र
(ख) दण्ड चित्र
(ग) रेखा चित्र
(घ) प्रतीक चित्र
उत्तर:
(क) आयत चित्र।

प्रश्न 7
निम्नलिखित में से कौन-सा एकविमीय चित्र है? [2006, 08]
(क) आयत चित्र
(ख) वर्ग चित्र
(ग) कोणिक चित्र
(घ) अन्तर्विभक्त चित्र
उत्तर:
(घ) अन्तर्विभक्त चित्र।

प्रश्न 8
संचयी आवृत्ति वक्र को कहा जाता है [2012]
(क) ओजाइव
(ख) पाई चित्र
(ग) दण्ड आरेख
(घ) अन्तर्विभक्त दण्ड आरेख
उत्तर:
(क) ओजाइव।

We hope the UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data (समंकों का प्रदर्शन) help you. If you have any query regarding UP Board Solutions for Class 12 Economics Chapter 25 Presentation of Data (समंकों का प्रदर्शन), drop a comment below and we will get back to you at the earliest.

UP Board Solutions for Class 12 Civics Chapter 16 Union Territories and their Administrative System

UP Board Solutions for Class 12 Civics Chapter 16 Union Territories and their Administrative System (संघ राज्यक्षेत्र (केन्द्रप्रशासित क्षेत्र) तथा उनकी शासन-व्यवस्था) are part of UP Board Solutions for Class 12 Civics. Here we have given UP Board Solutions for Class 12 Civics Chapter 16 Union Territories and their Administrative System (संघ राज्यक्षेत्र (केन्द्रप्रशासित क्षेत्र) तथा उनकी शासन-व्यवस्था).

Board UP Board
Textbook NCERT
Class Class 12
Subject Civics
Chapter Chapter 16
Chapter Name Union Territories and their Administrative System
(संघ राज्यक्षेत्र (केन्द्रप्रशासित क्षेत्र) तथा उनकी शासन-व्यवस्था)
Number of Questions Solved 26
Category UP Board Solutions

UP Board Solutions for Class 12 Civics Chapter 16 Union Territories and their Administrative System (संघ राज्यक्षेत्र (केन्द्रप्रशासित क्षेत्र) तथा उनकी शासन-व्यवस्था)

विस्तृत उतरीय प्रश्न [6 अंक]

प्रश्न 1.
भारत के केन्द्र-प्रशासित क्षेत्रों के नाम लिखिए तथा उनकी शासन व्यवस्था पर प्रकाश डालिए। [2008, 10, 11]
या

संघ-शासित क्षेत्र से क्या तात्पर्य है? ‘राष्ट्रीय राजधानी क्षेत्र दिल्ली के प्रशासक की नियुक्ति कौन करता है?
या
केन्द्रशासित क्षेत्रों के प्रशासनिक ढाँचे का वर्णन कीजिए।
उत्तर :
केन्द्र-प्रशासित क्षेत्र (संघ राज्य क्षेत्रों) का निर्धारण
स्वतन्त्रता प्राप्ति के पश्चात् भारत में चार प्रकार के राज्यों की स्थापना की गई थी – (1) ‘क’ श्रेणी के राज्यों में पूर्व ब्रिटिश प्रान्तों को रखा गया, इस श्रेणी के राज्यों की संख्या 9 थी। (2) ‘ख’ श्रेणी के राज्यों में कुछ संघ तथा बड़ी-बड़ी देशी रियासतों को सम्मिलित किया गया, इनकी संख्या 8 थी। (3) ‘ग’ श्रेणी के राज्यों में कुछ छोटे प्रान्तों को सम्मिलित किया गया, इनकी संख्या 9 थी, तथा (4) ‘घ’ श्रेणी के राज्यों में अण्डमान तथा निकोबार द्वीपों को सम्मिलित किया गया। ‘क’ तथा ‘ख’ श्रेणी के राज्यों में पूर्ण उत्तरदायी शासन की स्थापना की गई परन्तु ‘ग’ श्रेणी के राज्यों में आंशिक उत्तरदायी शासन की स्थापना की गई तथा ‘घ’ श्रेणी के राज्यों में किसी उत्तरदायी शासन की स्थापना नहीं की गई वरन् उनका प्रशासन केन्द्र सरकार के अधीन रहा। इनको ही केन्द्र-प्रशासित क्षेत्रों की संज्ञा दी गई।

राज्य पुनर्गठन अधिनियम, 1956 के अन्तर्गत ‘क’, ‘ख’, ‘ग’ तथा ‘घ’ श्रेणी के राज्यों को समाप्त कर दिया गया तथा सभी राज्यों को मिलाकर 14 नए राज्यों के गठन के साथ-साथ 6 केन्द्र शासित प्रदेशों की स्थापना की गई। राज्यों और केन्द्र-शासित प्रदेशों की संख्या कालान्तर में विभिन्न अधिनियमों के अनुसरण के साथ परिवर्तित होती गई।

वर्तमान स्थिति – भारत में वर्तमान समय में 29 राज्य तथा 7 संघीय क्षेत्र हैं। पूर्ण राज्य का दर्जा प्राप्त न होने के बावजूद भी दिल्ली व पुदुचेरी में 70वें संविधान संशोधन के आधार पर यह व्यवस्था की गई है कि इनकी विधानसभाओं के सदस्यों को भी राष्ट्रपति के चुनाव में भाग लेने का अधिकार होगा। उत्तराखण्ड, झारखण्ड, छत्तीसगढ़ तथा तेलंगाना को भारतीय संघ में नए राज्यों के रूप में सम्मिलित किया गया है और भारत के कुल 29 राज्यों में ये भी शामिल हैं।

संघीय क्षेत्रों का प्रशासन
संघीय क्षेत्र (केन्द्र-प्रशासित क्षेत्र) की विधानसभा अपने सम्पूर्ण क्षेत्र या कुछ भाग के लिए। उन नियमों के बारे में कानून का निर्माण कर सकती है जो कि संविधान में दी गई सातवीं अनुसूची में राज्य सूची अथवा समवर्ती सूची में दिए गए हैं और यदि वे विषय इस क्षेत्र पर लागू होते हैं। यदि संघीय क्षेत्र की विधानसभा किसी ऐसे कानून का निर्माण कर देती है जो संसद के कानून के विरुद्ध है तो उस क्षेत्र की विधानसभा का कानून वहाँ तक अवैधानिक समझा जाएगा। जहाँ तक कि वह संसद के कानून के विरुद्ध है।

दिल्ली, पुदुचेरी तथा अण्डमान और निकोबार द्वीप समूह का प्रशासन उपराज्यपाल के अधीन है। चण्डीगढ़, लक्षद्वीप, दादरा और नगर हवेली तथा दमन और दीव का प्रशासन प्रशासक के अधीन है। उल्लेखनीय है कि संविधान संशोधन (55) के अन्तर्गत अरुणाचल प्रदेश तथा संविधान संशोधन (57) के अन्तर्गत गोआ को राज्य का स्तर प्राप्त हो गया है। गोआ के साथ जुड़े दमन एवं दीव पूर्व की भाँति केन्द्र-शासित क्षेत्र ही हैं। वहाँ प्रशासक प्रशासकीय कार्यों का संचालन करता है। प्रशासन की नियुक्ति राष्ट्रपति के द्वारा की जाती है।

इस प्रकार केन्द्र-शासित क्षेत्रों में अलग-अलग प्रकार की शासन व्यवस्था है। दो केन्द्र-शासित क्षेत्रों (दिल्ली एवं पुदुचेरी) में संसदीय अधिनियम के अनुसार लोकप्रिय मन्त्रिपरिषद् व विधानसभाएँ स्थापित की गई हैं और शेष 5 संघ राज्यों को प्रबन्ध पूर्ण रूप से केन्द्र द्वारा किया जाता है। राष्ट्रपति को प्रत्येक संघीय क्षेत्र के लिए प्रशासक नियुक्त करने का अधिकार है। राष्ट्रीय राजधानी क्षेत्र दिल्ली के प्रशासक की नियुक्ति राष्ट्रपति के द्वारा की जाती है। संविधान के द्वारा संघ राज्य क्षेत्र के प्रशासकों को अध्यादेश जारी करने की शक्ति प्रदान की गई है। लेकिन वह अपनी इस शक्ति का प्रयोग राष्ट्रपति की पूर्व अनुमति से ही कर सकता है। यदि वह चाहे तो किसी राज्य से लगे केन्द्रीय क्षेत्र को उस राज्य के अन्तर्गत करने का अधिकार भी रखता है। संविधान ने राष्ट्रपति को यह अधिकार दिया है कि वह अण्डमान व निकोबार द्वीप समूह तथा लक्षद्वीप, दमन व दीव के प्रशासन एवं व्यवस्था के लिए कोई नियम बना सकता है। इन नियमों को संसद द्वारा पारित अधिनियमों के समान ही मान्यता प्राप्त होगी। इसी प्रकार संसद को यह अधिकार प्राप्त है कि वह इन क्षेत्रों के लिए कोई अन्य व्यवस्था कर दे। राष्ट्रपति राज्य की कार्यपालिका शक्ति स्वयं भी धारण कर सकता है।

अनुच्छेद 241 के अन्तर्गत संसद विधि द्वारा किसी संघ प्रशासित क्षेत्र के लिए उच्च न्यायालय गठित कर सकती है या ऐसे किसी राज्य-क्षेत्र में किसी न्यायालय को इस संविधान में सभी या किन्हीं प्रयोजनों के लिए उच्च न्यायालय घोषित कर सकेगी। जब तक ऐसा विधान नहीं बनाया जाता तब तक ऐसे राज्य-क्षेत्रों के सम्बन्ध में विद्यमान उच्च न्यायालय अपनी अधिकारिता का प्रयोग करते रहेंगे। दिल्ली के लिए 1966 से पृथक् उच्च न्यायालय की व्यवस्था की गई है जबकि अन्य 6 केन्द्र शासित प्रदेश निकटवर्ती राज्यों के उच्च न्यायालयों के साथ सम्बद्ध किए गए हैं; जैसेचण्डीगढ़ (पंजाब एवं हरियाणा उच्च न्यायालय), लक्षद्वीप (केरल उच्च न्यायालय), अण्डमान और निकोबार द्वीप समूह (कलकत्ता उच्च न्यायालय), पुदुचेरी (मद्रास उच्च न्यायालय), दादरा और नगर हवेली (बम्बई उच्च न्यायालय), दमन और दीव (बम्बई उच्च न्यायालय)।

लघु उत्तरीय प्रश्न (शब्द सीमा : 150 शब्द) (4 अंक)

प्रश्न 1.
भौगोलिक स्थिति को स्पष्ट करते हुए किन्हीं दो केन्द्र प्रशासित क्षेत्रों (संघ राज्य क्षेत्रों) के नाम लिखिए।
या
दो केन्द्रशासित राज्यों (क्षेत्रों पर संक्षिप्त टिप्पणी लिखिए।)
उत्तर :
भौगोलिक स्थिति के अनुसार दो केन्द्र-प्रशासित क्षेत्र निम्नलिखित हैं –

1. दमन और दीव – यह केन्द्र-शासित क्षेत्र भौगोलिक रूप से दो पृथक् स्थलों को मिलाकर राजनीतिक इकाई बनाया गया है। दोनों के बीच में विशाल अरब सागर लहराता है। दमन गुजरात की मुख्य भूमि पर अरब सागर के किनारे स्थित है। यह 20° 24′ उत्तरी अक्षांश तथा 72° 48′ पूर्वी देशान्तर पर स्थित है। इसके विपरीत दीव काठियावाड़ प्रायद्वीप के समीप अरब सागर में एक टापू है जो पुल द्वारा जूनागढ़ जिले से जुड़ा हुआ है। यह 20° 42′ उत्तरी अक्षांश तथा 70° 45′ पूर्वी देशान्तर पर स्थित है।

2. दादरा और नगर हवेली – यह संघ राज्य दो पृथक् भौगोलिक क्षेत्रों से बना है। पहला दादरा जो काफी छोटा क्षेत्र है तथा दूसरा नगर हवेली जो अपेक्षाकृत विस्तृत है। दोनों के बीच में गुजरात का वलसाड़ जिला है। दादरा चारों ओर से इस जिले से घिरा हुआ है, जबकि नगर हवेली की उत्तरी सीमा इसी जिले को छूती है और दक्षिणी भाग महाराष्ट्र से लगा हुआ है। यह संघ राज्य 20° 18′ उत्तरी अक्षांश तथा 73° 12′ पूर्वी देशान्तर पर गुजरात व महाराष्ट्र के बीच में स्थित है।

UP Board Solutions for Class 12 Civics Chapter 16 Union Territories and their Administrative System

प्रश्न 2.
दिल्ली के वर्तमान ढाँचे पर प्रकाश डालिए।
उत्तर :
वर्ष 1911 ई० में देश की राजधानी को कोलकाता से दिल्ली स्थानान्तरित किया गया। वर्ष 1956 ई० में इसे केन्द्र-शासित राज्य का स्तर प्राप्त हुआ। 69वें संविधान संशोधन अधिनियम (1991) के फलस्वरूप दिल्ली में विधानसभा का गठन किया गया। इस राज्य के लिए कुछ विशेष विधेयकों को पारित करने के लिए केन्द्र से अग्रिम स्वीकृति लेना अनिवार्य होता है। राष्ट्रीय राजधानी क्षेत्र दिल्ली की विधानसभा द्वारा पारित कुछ विधेयकों को राष्ट्रपति द्वारा विचार करने तथा स्वीकृति के निमित्त रोक लिया जाता है।

दिल्ली को केन्द्र-शासित प्रदेशों के समान संविधान की सातवीं अनुसूची को सूची II और III में निहित मामलों में कानून बनाने का अधिकार है लेकिन वह संविधान की अनुसूची II की प्रविष्टि 1 (सार्वजनिक सुरक्षा), 2 (पुलिस बल), और 18 ( भूमि, कृषि क्षेत्र तथा नई बस्तियाँ) पर कानून नहीं बना सकती है। अनेक क्षेत्रों में राष्ट्रीय राजधानी क्षेत्र दिल्ली पर केन्द्रीय गृह मन्त्रालय के आन्तरिक सुरक्षा विभाग तथा गृह विभाग का सीधा हस्तक्षेप होता है। इस प्रकार दिल्ली की स्थिति राज्यों के प्रशासनिक ढाँचे से सर्वथा अलग प्रकार की है जो भारत के अन्य किसी राज्य में परिलक्षित नहीं होती है।

प्रश्न 3.
दिल्ली के अतिरिक्त अन्य संघीय क्षेत्रों के वर्तमान शासन पर संक्षिप्त टिप्पणी लिखिए।
उत्तर :
4 दिसम्बर, 1962 ई० को लोकसभा ने भारतीय संविधान का 14वाँ संशोधन पारित किया। बाद में राज्यसभा ने भी इसका अनुमोदन कर दिया तथा राष्ट्रपति ने अपनी अनुमति दे दी। भारतीय संविधान के 14वें संशोधन के द्वारा पुदुचेरी को भारतीय क्षेत्र में सम्मिलित किया गया। संविधान के 12वें संशोधन के द्वारा गोवा, दमन, दीव को भारतीय क्षेत्र में सम्मिलित किया गया। संविधान के 10वें संशोधन के द्वारा दादरा तथा नगर हवेली को भारतीय क्षेत्र में प्रविष्ट कर लिया गया। पहले ये फ्रांस तथा पुर्तगाल के अधिकार-क्षेत्र में थे।

मणिपुर व त्रिपुरा को 21 जनवरी, 1972 ई० को, हिमाचल प्रदेश को 25 जनवरी, 1981 ई० को, अरुणाचल प्रदेश को 1986 ई० को तथा गोवा को 1987 ई० को पूर्ण राज्य का दर्जा प्रदान कर दिया गया।

अब भारत में 7 केन्द्रशासित क्षेत्र इस प्रकार हैं –

  1. चण्डीगढ़
  2. दिल्ली
  3. दमन और दीव
  4. दादरा और नगर हवेली
  5. पुदुचेरी
  6. लक्षद्वीप
  7. अण्डमान और निकोबार द्वीपसमूह।

लघु उत्तरीय प्रश्न (शब्द सीमा : 50 शब्द) (2 अंक)

प्रश्न 1.
राष्ट्रीय राजधानी राज्य-क्षेत्र दिल्ली पर एक संक्षिप्त टिप्पणी लिखिए।
उत्तर :
1911 ई० में अंग्रेजों द्वारा दिल्ली को भारत की राजधानी बनाया गया। तत्पश्चात् स्वतन्त्र भारत में 1956 ई० में दिल्ली को भारत संघ के केन्द्र-शासित प्रदेश का दर्जा प्रदान किया गया। वर्तमान समय में 69वें संवैधानिक संशोधन के द्वारा 1991 ई० में संघ राज्य-क्षेत्र दिल्ली को अब ‘राष्ट्रीय राजधानी राज्य-क्षेत्र दिल्ली के नाम से जाना जाता है। दिल्ली के प्रशासक को ‘उपराज्यपाल’ कहा जाता है, जिसकी नियुक्ति राष्ट्रपति द्वारा की जाती है तथा वह राष्ट्रपति के प्रति ही उत्तरदायी होता है। इसके अतिरिक्त दिल्ली के लिए 70 सदस्यीय विधानसभा तथा मन्त्रिपरिषद् की व्यवस्था भी की गयी है। मन्त्रिपरिषद् के सम्बन्ध में स्मरणीय तथ्य यह है कि चुनाव के पश्चात् मन्त्रिपरिषद् के प्रधान अर्थात् मुख्यमन्त्री की नियुक्ति राष्ट्रपति द्वारा की जाती है तथा मुख्यमन्त्री राष्ट्रपति के प्रति ही उत्तरदायी होता है।

प्रश्न 2.
1963 ई० के अधिनियम के अनुसार संघीय क्षेत्रों का प्रशासन किस प्रकार से संचालित होता है?
उत्तर :
संघीय क्षेत्र की विधानसभा अपने सम्पूर्ण क्षेत्र अथवा कुछ भाग के लिए उन विषयों के सम्बन्ध में कानून का निर्माण कर सकती है जो कि संविधान में दी गई सातवीं अनुसूची में राज्य सूची अथवा समवर्ती सूची में दिए गए हैं, यदि वे विषय इस क्षेत्र पर लागू होते हैं। यदि संघीय क्षेत्र की विधानसभा कोई ऐसा कानून पारित कर देती है जो संसद के किसी कानून के विरुद्ध है तो उस क्षेत्र की विधानसभा का कानून वहाँ तक अवैधानिक समझा जाएगा जहाँ तक कि वह संसद के कानून का विरोधी है।

प्रश्न 3.
पॉण्डिचेरी (आधुनिक पुदुचेरी) के शासकीय संगठन की रूपरेखा दीजिए।
उत्तर :
इस संघ राज्य-क्षेत्र में सर्वोच्च कार्यपालिका अधिकारी को उपराज्यपाल कहते हैं, जिसे राष्ट्रपति द्वारा 5 वर्ष की अवधि के लिए नियुक्त किया जाता है। इस क्षेत्र के लिए लोकप्रिय शासन की व्यवस्था की गयी है जिसके अनुसार इस क्षेत्र में मन्त्रिमण्डल और विधानसभा हैं। अन्य राज्यों की विधान-सभाओं और पुदुचेरी की विधानसभा में अन्तर केवल यह है कि पुदुचेरी विधानसभा की शक्तियाँ अन्य राज्यों की विधानसभाओं की तुलना में सीमित हैं। पुदुचेरी में एक मन्त्रिपरिषद् है, जिसका प्रधान मुख्यमन्त्री है। मन्त्रिपरिषद् उपराज्यपाल को प्रशासनिक कार्यों में सहायता के परामर्श प्रदान करती है।

प्रश्न 4.
केन्द्र-शासित प्रदेशों के शासन के प्रमुख के रूप में किसकी भूमिका है? या केन्द्र-शासित क्षेत्रों के प्रशासनिक ढाँचे का वर्णन कीजिए। [2009]
उत्तर :
केन्द्र-शासित प्रदेशों के शासन के संचालन को विभिन्न प्रकार की व्यवस्थाओं के अन्तर्गत रखा गया है, जैसे –

  1. दिल्ली, पुदुचेरी तथा अण्डमान और निकोबार द्वीप समूह का शासन उपराज्यपाल के अधीन संचालित होता है।
  2. चण्डीगढ़, दादरा और नगर हवेली, दमन और दीव तथा लक्षद्वीप का शासन प्रशासक द्वारा संचालित किया जाता है।

अतिलघु उत्तरीय प्रश्न (1 अंक)

प्रश्न 1.
भारतीय संघ में केन्द्र-शासित क्षेत्रों की संख्या कितनी है? [2008, 16]
उत्तर :
भारतीय संघ में केन्द्र-शासित क्षेत्रों की संख्या 7 है।

प्रश्न 2.
किन्हीं चार (दो) केन्द्र-शासित प्रदेशों के नाम लिखिए।
उत्तर :

  1. चण्डीगढ़
  2. दादरा व नगर हवेली
  3. लक्षद्वीप
  4. पुदुचेरी।

प्रश्न 3.
वर्तमान समय में किन केन्द्र-शासित क्षेत्रों में लोकप्रिय सरकार है?
उत्तर :
वर्तमान समय में दो केन्द्र-शासित क्षेत्रों-दिल्ली और पुदुचेरी में लोकप्रिय सरकार/ विधानसभा और मन्त्रिपरिषद् हैं।

UP Board Solutions for Class 12 Civics Chapter 16 Union Territories and their Administrative System

प्रश्न 4.
केन्द्र-शासित क्षेत्र दिल्ली को मुख्य प्रशासक कौन है?
उत्तर :
केन्द्र-शासित क्षेत्र दिल्ली का मुख्य प्रशासक ‘उपराज्यपाल है, जिसे राष्ट्रपति 5 वर्ष के लिए नियुक्त करता है। वर्तमान में उपराज्यपाल श्री अनिल बैजल हैं।

प्रश्न 5.
मुख्य आयुक्त की नियुक्ति कौन करता है?
उत्तर :
मुख्य आयुक्त की नियुक्ति. राष्ट्रपति द्वारा की जाती है।

प्रश्न 6.
राष्ट्रीय राजधानी क्षेत्र दिल्ली की विधानसभा में सदस्यों की संख्या कितनी है? वहाँ के मुख्यमन्त्री की नियुक्ति कौन करता है?
उत्तर :
संविधान के 69वें संशोधन अधिनियम, 1991 ई० के अनुसार दिल्ली की विधानसभा में सदस्यों की संख्या 70 है तथा वहाँ के मुख्यमन्त्री की नियुक्ति राष्ट्रपति करते हैं।

प्रश्न 7.
किन्हीं दो केन्द्र प्रशासित क्षेत्रों (संघ-राज्य क्षेत्रों) की स्थिति बताइए।
उत्तर :

  1. लक्षद्वीप-लक्षद्वीप एक केन्द्र प्रशासित क्षेत्र है तथा यह अरब सागर में स्थित है।
  2. अण्डमान व निकोबार द्वीप समूह-यह भी एक केन्द्र प्रशासित क्षेत्र है तथा यह बंगाल की खाड़ी में स्थित है।

प्रश्न 8
केन्द्र प्रशासित कोई दो संघीय क्षेत्रों के नाम लिखिए जहाँ विधानसभा नहीं है। [2010]
उत्तर :

  1. दमन और दीव
  2. दादरा और नगर हवेली।

प्रश्न 9
कौन-सा केन्द्र-शासित प्रदेश दो राज्यों की राजधानी है? [2011, 14]
उत्तर
चण्डीगढ़।

बहुविकल्पीय प्रश्न (1 अंक)

प्रश्न 1.
गोवा को पूर्ण राज्य का दर्जा कब प्रदान किया गया?
(क) 1985 ई० में
(ख) 1986 ई० में
(ग) 1987 ई० में
(घ) 1988 ई० में।

प्रश्न 2.
गोवा, दीव व दमन तथा पुदुचेरी का प्रशासन किसके अधीन है?
(क) उपराज्यपाल
(ख) राज्यपाल
(ग) मुख्यायुक्त
(घ) प्रशासक

प्रश्न 3.
दिल्ली को राज्य का दर्जा प्रदान किया गया
(क) 1991 ई० में
(ख) 1994 ई० में
(ग) 1992 ई० में
(घ) 1993 ई० में।

प्रश्न 4.
1956 ई० में पारित राज्य पुनर्गठन अधिनियम के द्वारा निम्नलिखित में से किसको केन्द्र शासित क्षेत्र में सम्मिलित नहीं किया गया था?
या
निम्नलिखित में से केन्द्र-शासित राज्य कौन-सा है।
(क) जम्मू-कश्मीर
(ख) मेघालय
(ग) चण्डीगढ़
(घ) त्रिपुरा।

प्रश्न 5.
संघीय क्षेत्र के रूप में पुदुचेरी किस राज्य के साम्राज्यवाद से मुक्त हुआ था?
(क) ब्रिटेन
(ख) पुर्तगाल
(ग) फ्रांस
(घ) जर्मनी।

प्रश्न 6.
भारतीय संघ में सम्मिलित राज्यों की संख्या है
(क) 20
(ख) 25
(ग) 40
(घ) 29

प्रश्न 7.
निम्नलिखित में से कौन संघ राज्य क्षेत्र है? [2012]
(क) गोवा
(ख) दिल्ली
(ग) छत्तीसगढ़
(घ) मेघालय।

प्रश्न 8.
निम्नलिखित में से केन्द्र-शासित राज्य कौन-सा है? [2009]
(क) पुदुचेरी
(ख) सिक्किम
(ग) गोवा
(घ) मिजोरम

प्रश्न 9.
भारत में कुल कितने संघ-शासित क्षेत्र हैं? [2008, 09]
(क) 7
(ख) 8
(ग) 6
(घ) 9

उत्तर :

  1. (ग) 1987 ई० में
  2. (क) उपराज्यपाल
  3. (क) 1991 ई० में
  4. (ग) चण्डीगढ़
  5. (ग) फ्रांस
  6. (घ) 29
  7. (ख) दिल्ली
  8. (क) पुदुचेरी
  9. (क) 7

We hope the UP Board Solutions for Class 12 Civics Chapter 16 Union Territories and their Administrative System (संघ राज्यक्षेत्र (केन्द्रप्रशासित क्षेत्र) तथा उनकी शासन-व्यवस्था) help you. If you have any query regarding UP Board Solutions for Class 12 Civics Chapter 16 Union Territories and their Administrative System (संघ राज्यक्षेत्र (केन्द्रप्रशासित क्षेत्र) तथा उनकी शासन-व्यवस्था), drop a comment below and we will get back to you at the earliest.

UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 2 आकाशदीप

UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 2 आकाशदीप (जयशंकर प्रसाद) are part of UP Board Solutions for Class 11 Samanya Hindi. Here we have given UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 2 आकाशदीप (जयशंकर प्रसाद).

Board UP Board
Textbook NCERT
Class Class 11
Subject Samanya Hindi
Chapter Chapter 2
Chapter Name आकाशदीप (जयशंकर प्रसाद)
Number of Questions 2
Category UP Board Solutions

UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 2 आकाशदीप (जयशंकर प्रसाद)

प्रश्न 1.
प्रसाद जी द्वारा रचित ‘आकाशदीप’ कहानी का सारांश लिखिए।
या
‘आकाशदीप’ कहानी की कथावस्तु लिखकर यह स्पष्ट कीजिए कि यह कहानी आपको क्यों अच्छी लगती है?

UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 2 आकाशदीप img-1

UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 2 आकाशदीप img-2

UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 2 आकाशदीप img-3

प्रश्न 2.
‘आकाशदीप’ कहानी का मुख्य उद्देश्य स्पष्ट कीजिए।
या
जयशंकर प्रसाद की संकलित कहानी की कथावस्तु की समीक्षा कीजिए।
या
‘आकाशदीप’ कहानी के शीर्षक की सार्थकता पर प्रकाश डालिए।

UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 2 आकाशदीप img-4

UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 2 आकाशदीप img-5

(3) उद्देश्य – प्रसाद जी का साहित्य आदर्शवादी है। प्रस्तुत कहानी में भावना की अपेक्षा कर्तव्यनिष्ठा का आदर्श प्रस्तुत किया गया है। चम्पा एक आदर्श प्रेमिका है और इन सबसे ऊपर है उसका उत्सर्ग भाव। वह अपने कर्तव्य का पालन करती हुई अपने व्यक्तिगत प्रेम और जीवन को समर्पित कर देती है। उसका चरित्र एक आदर्श उदात्त नारी का चरित्र है। कहानीकार को उद्देश्य इसके चरित्र के माध्यम से समाज में प्रेम का आदर्श स्वरूप उपस्थित करना है, जिसमें कहानीकार को पूर्ण सफलता मिली है।

इस प्रकार ‘आकाशदीप’ कहानी की कथावस्तु जीवन्त तथा मार्मिक है। चम्पा प्रेम, कर्तव्यनिष्ठा और राष्ट्रभक्ति के प्रति सजग है। वह अपने प्रेम का बलिदान करती है तथा प्रेम के गौरव की रक्षा के लिए स्वयं का आत्मोत्सर्ग भी करती है। निष्कर्ष रूप से यह कहा जा सकता है कि प्रस्तुत कहानी; कहानी-कला की कसौटी पर खरी उतरती है।

We hope the UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 2 आकाशदीप (जयशंकर प्रसाद) help you. If you have any query regarding UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 2 आकाशदीप (जयशंकर प्रसाद), drop a comment below and we will get back to you at the earliest.

UP Board Class 10 Maths Model Papers Paper 1

UP Board Class 10 Maths Model Papers Paper 1 are part of UP Board Class 10 Maths Model Papers. Here we have given UP Board Class 10 Maths Model Papers Paper 1.

Board UP Board
Textbook NCERT Based
Class Class 10
Subject Maths
Model Paper Paper 1
Category UP Board Model Papers

UP Board Class 10 Maths Model Papers Paper 1

समय : 3 घण्टे 15 मिनट
पूर्णांक : 70

निर्देश

  •  इस प्रश्न-पत्र में कुल सात प्रश्न हैं।
  • सभी प्रश्न अनिवार्य हैं।
  • प्रत्येक प्रश्न के प्रारम्भ में स्पष्ट उल्लेख है, कि उसके कितने खण्ड करने हैं।
  • प्रत्येक प्रश्न के अंक उसके सम्मुख अंकित हैं।
  • प्रथम प्रश्न से प्रारम्भ कीजिए और अन्त तक करते जाइए। जो प्रश्न न आता हो, उस पर समय नष्ट न करें।
  • यदि रफ कार्य के लिए स्थान अपेक्षित है, तो उत्तर-पुस्तिका के बाएँ पृष्ठ पर कीजिए और फिर काट (x) दीजिए। उस पृष्ठ पर कोई हल न कीजिए।
  • रचना के प्रश्नों के हल में रचना रेखाएँ न मिटाइए। यदि पूछा गया हो तो रचना के पद अवश्य लिखिए।
  • प्रश्न संख्या 1 के अतिरिक्त सभी प्रश्नों के हल के क्रियापद स्पष्ट रूप से लिखिए। प्रश्नों के हल को उत्तर-पुस्तिका के दोनों ओर लिखिए।
  • जिन प्रश्नों के हल में चित्र खींचना आवश्यक है, उनमें स्वच्छ एवं स्पष्ट चित्र अवश्य खींचिए। चित्र के बिना हल अशुद्ध तथा अपूर्ण माना जाएगा।

प्रश्न 1.
सभी खंड कीजिए। प्रत्येक खंड में उत्तर के लिए चार विकल्प दिए गए हैं, जिनमें से केवल एक सही है। सही विकल्प छाँटकर उसे अपनी उत्तर-पुस्तिका में लिखिए।
(क) 144 के अभाज्य गुणनखंडों में 2 की घात है।
(a) 4
(b)5
(c) 6
(d) 3

(ख) [latex]\frac { 1 }{ cosec\theta } [/latex] का अधिकतम मान है।
(a) 1
(b) -1
(c) 0
(d) 2

(ग) एक परीक्षा में 7 छात्रों के प्राप्तांक 3, 2, 3, 4, 2, 2 तथा 5 हैं। छात्रों के प्राप्तांकों का बहुलक होगा [1]
(a) 2
(b) 3
(c) 4
(d) 5

(घ) दो वृत्त एक-दूसरे को C पर स्पर्श करते हैं तथा उन वृत्तों की AB एक उभयनिष्ठ स्पर्श रेखा है, तो ZACB बराबर हैं।
(a) 60°
(b) 45°
(c) 30°
(d) 90°

(ङ) यदि एक समांतर श्रेणी का वाँ पद [latex]\frac { 3+n }{ 4 }[/latex] है, तो उसका 8वाँ पद है।
(a) 11
(b) [latex]\frac { 11 }{ 4 } [/latex]
(c) [latex]\frac { 11 }{ 2 } [/latex]
(d) 22

(च) एक लंबवृत्तीय शंकु के छिन्नक की ऊँचाई 16 सेमी तथा उसके वृत्ताकार सिरों की त्रिज्याएँ 8 सेमी तथा 20 सेमी हैं। उसकी तिर्यक ऊँचाई बराबर है [1]
(a) 18 सेमी
(b) 16 सेमी
(c) 20 सेमी
(d) 24 सेमी

प्रश्न 2.
सभी खंड कीजिए।
(क) k का वह मान ज्ञात कीजिए, जिसके लिए समीकरण युग्म 3x – 4y + 7 = 0, kx + 3y – 5 = 0 का कोई हल नहीं होगा। [1]
(ख) समांतर श्रेणी 9, 13, 17, 21, 25, … का 12 वाँ पद ज्ञात कीजिए। [1]
(ग) cos 1°, cos 2°, c08 3°, …, cos 180° का मान ज्ञात कीजिए। [1]
(घ) 70 प्रेक्षणों के प्रदत्त आँकड़ों के लिए “कम के लिए तोरण” तथा “अधिक के लिए तोरण’ बिंदु (20.5, 35) पर प्रतिच्छेदित करते हैं, तो आँकड़ों का माध्य ज्ञात कीजिए। .

प्रश्न 3.
सभी खंड कीजिए।
(क) 15 सेमी लंबा एक रेखाखंड खींचिए और इसे 3; 2 अंतः अनुपात में विभाजित कीजिए तथा रचना भी लिखिए। [2]
(ख) क्या 7×5×3×2 + 3 एक भाज्य संख्या है? अपने उत्तर की पुष्टि कीजिए।
(ग) चित्र में, AD ⊥ BC तथा BD = [latex]\frac { 1 }{ 3 } [/latex]CD है, तो सिद्ध कीजिए कि
2CA2 = 2AB2 + BC2
UP Board Class 10 Maths Model Papers Paper 1 image 1
(घ) दो वर्गों के क्षेत्रफलों का योग 468 मी’ हैं। यदि उनके परिमापों में 21 का अंतर है, तो दोनों वर्गों की भुजाएँ ज्ञात कीजिए।

प्रश्न 4.
सभी खंड कीजिए।
(क) एक घड़ी की मिनट की सूई की लंबाई 14 सेमी है। सूई द्वारा एक मिनट में पूरा किया गया क्षेत्रफल ज्ञात कीजिए। ( π= 22/7 लीजिए) [2]
(ख) कक्षा X के 10 विद्यार्थियों ने गणित की पहेली प्रतियोगिता में भाग लिया।
यदि लड़कियों की संख्या लड़कों की संख्या से 4 अधिक हो, तो इसे बीजगणित रूप में व्यक्त कीजिए। [2]
(ग) यदि A(1, 2), B(4,y), C(x, 6) तथा D(3, 5) इसी क्रम में समांतर चतुर्भुज ABCD के शीर्ष हैं, तो x तथा y के मान ज्ञात कीजिए। [2]
(घ) यदि बिंदु (x,y) बिंदुओं A (5, 1) तथा B(-1, 5) से समदूरस्थ है, तो सिद्ध कीजिए कि 3x = 2y

प्रश्न 5.
सभी खंड कीजिए।
(क) निम्न समीकरण युग्म को रैखिक समीकरणों के युग्म में बदलकर हल कीजिए [4]
UP Board Class 10 Maths Model Papers Paper 1 image 2
जहाँ, 2x + 3y ≠ 0 तथा 3x – 2y ≠ 0 है।
(ख) एक न्यून कोण ΔABC में, यदि tan (A + B-C) =1 तथा sec (B +C-A) = 2 हो, तो A, B और C के मान ज्ञात कीजिए। [4]
(ग) एक 20 सेमी आंतरिक व्यास वाले पाइप से 3 किमी/घंटा की दर से पानी एक बेलनाकार टंकी, जिसका व्यास 10 मी तथा गहराई 2 मी है, के अंदर भरा जा रहा है। कितने समय में वह टंकी भर जाएगी? (π = [latex]\frac { 22 }{ 7 } [/latex] लीजिए) [4]
(घ) यदि एक समबाहु त्रिभुज के दो शीर्षों के निर्देशांक (0, 0) तथा (3, √3) हैं, तब तीसरे शीर्ष के निर्देशांक ज्ञात कीजिए। [4]

प्रश्न 6.
सभी खंड कीजिए।
(क) एक डार्टबोर्ड की प्रथम रिंग के आन्तरिक तथा बाह्य व्यास क्रमशः 32 सेमी तथा 34 सेमी और दूसरी रिंग के आन्तरिक तथा बाह्य व्यास क्रमशः 19 सेमी तथा 21 सेमी हैं। इन दोनों रिंगों का कुल क्षेत्रफल कितना है?
(ख) एक भिन्न का हर, अंश के दोगुने से 4 अधिक है तथा जब अंश च हर दोनों में से 6 घटाया जाता है, तो हर अंश का 12 गुना हो जाता है। भिन्न ज्ञात कीजिए।
(ग) सिद्ध कीजिए कि [latex]\frac { tan\theta }{ 1-cot\theta } [/latex] + [latex]\frac { cot\theta }{ 1-tan\theta } [/latex] = 1 + secθ cosecθ
(घ) एक झील के ऊपरी तल से । मी ऊँचाई पर स्थित किसी स्थान पर एक बादल का उन्नयन कोण है तथा झील में उसके प्रतिबिंब का अवनमन कोण B है। सिद्ध कीजिए कि उस स्थान से बादल की दूरी [latex]\frac { 2hsec\alpha }{ tan\beta -tan\alpha } [/latex] है।

प्रश्न 7.
सभी खंड कीजिए।
(क) क्रिकेट टीम के एक कोच ने 3900 में 3 बल्ले तथा 6 गेंदें खरीदीं। बाद में, उसने एक और बल्ला तथा उसी प्रकार की 3 गेदे १ 1300 में खरीदीं। इस स्थिति को बीजगणितीय तथा ज्यामितीय रूप में व्यक्त कीजिए। [6]
अथवा
चित्र में, PAQ तथा PBQ दो अलग-अलग वृत्तों के चाप हैं। केंद्र 0 तथा त्रिज्या OP वाले वृत्त का एक हिस्सा चाप PAQ है तथा केंद्र M तथा त्रिज्या OM वाले वृत्त का एक हिस्सा चाप PBQ है, जहाँ PQ का मध्य-बिंदु M है। दर्शाइए कि दोनों चापों के द्वारा घिरे हुए भाग का क्षेत्रफल 25 (√3 – [latex]\frac { \pi }{ 6 } [/latex]) सेमी है।
UP Board Class 10 Maths Model Papers Paper 1 image 3
(ख) दो लम्बवृत्तीय शंकुओं के आधार के क्षेत्रफल समान हैं तथा उनकी ऊँचाइयों में 4; 3 का अनुपात हैं। यदि छोटे शंकु का आयतन 3637 सेमी” है, तब बड़े शंकु का आयतन ज्ञात कीजिए। [6]
अथवा
एक अर्द्धगोले, लम्बवृत्तीय शंकु और लम्बवृत्तीय बेलन के आधार की त्रिज्याएँ 1: 2:3 के अनुपात में हैं। यदि उनकी ऊँचाइयाँ समान हैं, तब अर्द्धगोले, शंकु और बेलन के आयतनों में अनुपात ज्ञात कीजिए। [6]

Solutions

उत्तर 1.
(क) (a)
(ख) (a)
(ग) (a)
(घ) (d)
(ङ) (b)
(च) (c)

उत्तर 2.
(क) k = [latex]\frac { -9 }{ 4 } [/latex]
(ख) a12 = 53
(ग) 0
(घ) 20.5

उत्तर 3.
(ख) हाँ
(घ) 12 मी तथा 18 मी

उत्तर 4.
(क) 10.26 सेमी
(ख) x + y = 10 तथा, y = x + 4, जहाँ x लड़कों की संख्या एवं y लड़कियों की संख्या है।
(ग) x = 6, y = 3

उत्तर 5.
(क) x = 2, y = 1
(ख) A = 60°, B = 52[latex]\frac { 1 }{ 2 } [/latex]° तथा C = 67[latex]\frac { 1 }{ 2 } [/latex]°
(ग) 166.57 सेमी2
(घ) (0, 2/3) या (3, -3)

उत्तर 6.
(क) 166.57 सेमी2
(ख) [latex]\frac { 7 }{ 18 } [/latex]

उत्तर 7.
(ख) 4847 सेमी3
अथवा
2 : 4 : 27

We hope the UP Board Class 10 Maths Model Papers Paper 1 will help you. If you have any query regarding UP Board Class 10 Maths Model Papers Paper 1, drop a comment below and we will get back to you at the earliest.

UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 1 बलिदान

UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 1 बलिदान (मुंशी प्रेमचन्द) are part of UP Board Solutions for Class 11 Samanya Hindi. Here we have given UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 1 बलिदान (मुंशी प्रेमचन्द).

Board UP Board
Textbook NCERT
Class Class 11
Subject Samanya Hindi
Chapter Chapter 1
Chapter Name बलिदान (मुंशी प्रेमचन्द)
Number of Questions 2
Category UP Board Solutions

UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 1 बलिदान (मुंशी प्रेमचन्द)

UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 1 बलिदान img-1

UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 1 बलिदान img-2

UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 1 बलिदान img-3

UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 1 बलिदान img-4

प्रश्न 2.
UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 1 बलिदान img-5

उत्तर
UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 1 बलिदान img-6

UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 1 बलिदान img-7

(3) उद्देश्य – प्रस्तुत कहानी में प्रेमचन्द ने अपने उद्देश्य को यथार्थवादी दृष्टि से प्रस्तुत किया है। यह कहानी कृषक परिवार के सेवा, त्याग और समर्पण की भावना की पोषक है। इसके माध्यम से लेखक शोषित और शोषक वर्ग की भावना से जनसामान्य को अवगत कराता है। शोषित दिन-रात मेहनत करते हैं परन्तु अपने लिए नहीं शोषक के लिए। अन्त में अपने शरीर का बलिदान भी उसी के लिए कर देते हैं। इस कहानी का मूल उद्देश्य जमींदार, कृषक और श्रमिक तीनों के बीच के दारुण सम्बन्धों को जनसामान्य के सम्मुख स्पष्ट करना है।

निष्कर्ष रूप में, कहानी-कला के प्रमुख तत्त्वों की दृष्टि से ‘बलिदान’ प्रेमचन्द की सफल कहानी है। कहानी में यथार्थवादी चित्रण है। आरम्भ, विकास और अन्त तीनों ही प्रभावशाली हैं। द्वन्द्व का सुन्दर चित्रण व पात्रों का मनोवैज्ञानिक विश्लेषण किया गया है। कथा सरल और रोचक है। उदात्त चरित्र और उद्देश्य कहानी की विशेषताएँ हैं।

We hope the UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 1 बलिदान (मुंशी प्रेमचन्द) help you. If you have any query regarding UP Board Solutions for Class 11 Samanya Hindi कथा भारती Chapter 1 बलिदान (मुंशी प्रेमचन्द), drop a comment below and we will get back to you at the earliest.