UP Board Solutions for Class 11 Maths Chapter 15 Statistics

UP Board Solutions for Class 11 Maths Chapter 15 Statistics (सांख्यिकी)

These Solutions are part of UP Board Solutions for Class 11 Maths. Here we have given UP Board Solutions for Class 11 Maths Chapter 15 Statistics (सांख्यिकी).

प्रश्नावली 15.1

प्रश्न 1 व 2 में दिए गए आँकड़ों के लिए माध्य के सापेक्ष विचलन ज्ञात कीजिए:

प्रश्न 1.
4, 7, 8, 9, 10, 12, 13, 17.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 1

UP Board Solutions

प्रश्न 2.
38, 70, 48, 40, 42, 55, 63, 46, 54, 44.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 2

प्रश्न 3 व 4 के आँकड़ों के लिए माध्यिका के सापेक्ष माध्य विचलन ज्ञात कीजिए:

प्रश्न 3.
13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17.
हल:
आँकड़ों को आरोही क्रम में लिखने (UPBoardSolutions.com) पर
10, 11, 11, 12, 13, 13, 14, 16, 16, 17, 17, 18
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 3

प्रश्न 4.
36, 72, 46, 42, 60, 45, 53, 46, 51, 49.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 4

UP Board Solutions

प्रश्न 5 व 6 के आँकड़ों के लिए माध्य के सापेक्ष माध्य विचलन ज्ञात कीजिए:

प्रश्न 5.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 5
हल:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 5.1

प्रश्न 6.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 6
हल:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 6.1

UP Board Solutions

प्रश्न 7 व 8 के आँकड़ों के लिए माध्यिका के सापेक्ष माध्यै विचलन ज्ञात कीजिए:

प्रश्न 7.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 7
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 7.1

प्रश्न 8.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 8
हल:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 8.1

UP Board Solutions

प्रश्न 9 व 10 के आँकड़ों के लिए मध्य के सापेक्ष माध्य विचलन ज्ञात कीजिए।

प्रश्न 9.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 9
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 9.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 9.2

UP Board Solutions

प्रश्न 10.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 10
हल:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 10.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 10.2

प्रश्न 11.
निम्नलिखित आँकड़ों के लिए माध्यिका के सापेक्ष माध्य विचलन ज्ञात कीजिए:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 11
हल:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 11.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 11.2

UP Board Solutions

प्रश्न 12.
नीचे दिए गए 100 व्यक्तियों की आयु के बंटन की माध्यिका आयु के सापेक्ष माध्य विचलन की गणना कीजिए:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 12
हल:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 12.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 12.2

UP Board Solutions

प्रश्नावली 15.2

प्रश्न 1 से 5 तक के लिए आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।

प्रश्न 1.
6, 7, 10, 12, 13, 4, 8, 12.
हल:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 1

प्रश्न 2.
प्रथम n प्राकृत संख्याएँ।
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 2
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 2.1

UP Board Solutions

प्रश्न 3.
3 के प्रथम 10 गुणज।
हल:
प्रथम दस 3 के गुणज : 3, 6, 9, 12, 15, 18, 21, 24, 27, 30
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 3
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 3.1

प्रश्न 4.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 4
हल:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 4.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 4.2

UP Board Solutions

प्रश्न 5.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 5
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 5.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 5.2

प्रश्न 6.
लघु विधि द्वारा माध्ये वे मानक विचलन ज्ञात कीजिए:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 6
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 6.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 6.2

UP Board Solutions

प्रश्न 7 व 8 में दिए गए बारंबारता बंटन के लिए माध्य व प्रसरण ज्ञात कीजिए:

प्रश्न 7.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 7
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 7.1

UP Board Solutions

प्रश्न 8.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 8
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 8.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 8.2

प्रश्न 9.
लघु विधि द्वारा माध्य, प्रसरण व मानक विचलन ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 9
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 9.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 9.2

UP Board Solutions

प्रश्न 10.
एक डिजाइन में बनाए गए वृत्तों के व्यास (मिमी में) नीचे दिए गए हैं।
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 10
वृत्तों के व्यासों का मानक विचलन के माध्य व्यास ज्ञात कीजिए।
हल:
दिए हुए असतत आँकड़ों को सतत (UPBoardSolutions.com) बारंबारता बंटन में बदलने के लिए अंतराल इस प्रकार हैं।
32.5 – 36.5, 36.5 – 40.5, 40.50 – 44.5, 44.5 – 48.5, 48.5 – 52.5
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 10.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 10.2

UP Board Solutions

प्रश्नावली 15.3

प्रश्न 1.
निम्नलिखित आँकड़ों से बताइए कि A या B में से किसमें अधिक बिखराव है।
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 1
हल:
माना कल्पित माध्य A = 45, h = 10.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 1.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 1.2
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 1.3
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 1.4

UP Board Solutions

प्रश्न 2.
शेयरों X और Y के नीचे दिए गए मूल्यों से बताइए कि किसके मूल्यों में अधिक स्थिरता है ?
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 2
हल:
माना शेयर X के आँकड़ों में कल्पित माध्य = 52
और शेयर Y के आँकड़ों (UPBoardSolutions.com) में कल्पित माUP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 2.1ध्य = 105
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 2.2
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 2.3
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 2.4

UP Board Solutions

प्रश्न 3.
एक कारखाने की दो फर्मों A और B के कर्मचारियों को दिए मासिक वेतन के विश्लेषण का निम्नलिखित परिणाम है:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 3
(i) A और B में से कौन सी फर्म अपने कर्मचारियों को वेतन के रूप में अधिक राशि देती है?
(ii) व्यक्तिगत वेतनों में किस फर्म A या B में अधिक विचरण है ?
हल:
फर्म A के लिए :
वेतन पाने वाले कर्मचारियों की संख्या = 586
मासिक वेतन की माध्य = 5253 रू
फर्म A द्वारा दिया गया कुल (UPBoardSolutions.com) वेतन = 5253 x 586 = 3078258 रू
वेतन बंटन का प्रसरण = 100
मानक विचलन = 10
विचरण गुणांक = [latex s=2]\frac { \sigma }{ \overline { x } }[/latex] x 100
= [latex s=2]\frac { 10 }{ 5253 }[/latex] x 100
= [latex s=2]\frac { 1000 }{ 5253 }[/latex]
= 0.19
फर्म B के लिए:
वेतन पाने वाले कर्मचारियों की संख्या = 648
मासिक वेतन का संख्या = 5253 रू
फर्म B द्वारा गया कुल वेतन = 5253 x 648 रू = 3403944 रू
वेतन बंटन का प्रसरण = 121
मानक विचलन = 11
विचरण गुणांक = [latex s=2]\frac { \sigma }{ \overline { x } }[/latex] x 100
= [latex s=2]\frac { 11 }{ 5253 }[/latex] x 100 = 0.21
(i) फर्म A द्वारा दिया गया कुल मासिक वेतन = 3078258 रू
फर्म B द्वारा दिया गया कुल मासिक वेतन = 3403944 रू
अत: फर्म B फर्म A की तुलना में अधिक मासिक वेतन देती है।
(ii) फर्म A के वेतन बंटन की विचरण गुणांक = 0.19 और
फर्म A के वेतन बंटन का विचरण गुणांक = 0.21
अतः फर्म B के वेतन बंटन में अधिक (UPBoardSolutions.com) बिखराव है।

UP Board Solutions

प्रश्न 4.
टीम A द्वारा एक सत्र में खेले गए फुटबॉल मैचों के आँकड़े नीचे दिए गए हैं:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 4
टीम B द्वारा खेले गए मैचों में बनाए गए गोलोंकमाथ्य 2 प्रति मैच और गोलों का मानक विचलन 1.25 था।
किस टीम को अधिक संगत (consistent) समझा जाना चाहिए ?
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 4.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 4.2
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 4.3

प्रश्न 5.
पचास वनस्पति उत्पादों की लंबाई x (सेमी में) और भार y (ग्राम में) के योग और वर्गों के योग नीचे दिए गए हैं।
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 5
लंबाई या भार में किसमें अधिक विचरण है ?
हल:
लंबाई के लिए:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 5.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 5.2
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 5.3

UP Board Solutions

अध्याय 15 पर विविध प्रश्नावली

प्रश्न 1.
आठ प्रेक्षणों का माध्य तथा प्रसरण क्रमशः 9 और 9.25 है। यदि इनमें से छः प्रेक्षण 6, 7, 10, 12, 12, और 13 हैं, तो शेष दो प्रेक्षण ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 1.1

UP Board Solutions

प्रश्न 2.
सात प्रेक्षणों का माध्य तथा प्रसरण क्रमशः 8 और 16 हैं। यदि इनमें से पाँच प्रेक्षण 2, 4, 10, 12, 14 हैं तो शेष दो प्रेक्षण ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 2
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 2.1

प्रश्न 3.
छः प्रेक्षणों को माध्य तथा मानक विचलन क्रमशः 8 तथा 4 हैं। यदि प्रत्येक प्रेक्षण को 3 से गुणा कर दिया जाए तो परिणामी प्रेक्षणों का माध्य व मानक विचलन ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 3

UP Board Solutions

UP Board Solutions for Class 11 Maths Chapter 15 Statistics 4
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 4.1

प्रश्न 5.
बीस प्रेक्षणों का माध्य तथा मानक विचलन क्रमशः 10 तथा 2 हैं। जांच करने पर यह पाया गया कि प्रेक्षण 8 गलत है। निम्न में से प्रत्येक का सही मध्य तथा मानक विचलन ज्ञात कीजिए यदि
(i) गलत प्रेक्षण हटा दिया जाए।
(ii) उसे 12 से बदल दिया जाए।
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 5
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 5.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 5.2

UP Board Solutions

प्रश्न 6.
एक कक्षा के पचास छात्रों द्वारा तीन विषयों गणित, भौतिक शास्त्र व रसायन शास्त्र में प्राप्तांकों का माध्य व मानक विचलन नीचे दिए गए हैं:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 6
किस विषय में सबसे अधिक विचलन है तथा किसमें सबसे कम विचलन है?
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 6.1

प्रश्न 7.
100 प्रेक्षणों का माध्य और मानक विचलन क्रमशः 20 और 3 हैं। बाद में यह पाया गया कि तीन प्रेक्षण 21, 21 तथा 18 गलत थे। यदि गलत प्रेक्षणों को हटा दिया जाए तो माध्य व मानक विचलन ज्ञात कीजिए।
हल:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 7
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 7.1

We hope the UP Board Solutions for Class 11 Maths Chapter 15 Statistics (सांख्यिकी) help you. If you have any query regarding UP Board Solutions for Class 11 Maths Chapter 15 Statistics (सांख्यिकी), drop a comment below and we will get back to you at the earliest.

UP Board Solutions for Class 11 Maths Chapter 16 Probability

UP Board Solutions for Class 11 Maths Chapter 16 Probability (प्रायिकता)

These Solutions are part of UP Board Solutions for Class 11 Maths. Here we have given UP Board Solutions for Class 11 Maths Chapter 16 Probability (प्रायिकता).

प्रश्नावली 16.1

निम्नलिखित प्रश्नों 1 से 7 में निर्दिष्ट परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए।

प्रश्न 1.
एक सिक्के को तीन बार उछाला गया है।
हल:
एक सिक्के को 3 बार उछालने से प्रतिदर्श समष्टि
S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}

प्रश्न 2.
एक पासा दो बार फेंका गया है।
हल:
एक पासे को दो बार फेंकने से जो घटनाएं घटी उनका प्रतिदर्श समष्टि :
S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (UPBoardSolutions.com) (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4,1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5,4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

UP Board Solutions

प्रश्न 3.
एक सिक्का चार बार उछाला गया है।
हल:
एक सिक्के को 4 बार उछालने से घटनाओं का प्रतिदर्श समष्टि इस प्रकार है।
S = {HHHH, HHHT, HHTH, HTHH, HTTH, HTHT, HHTT, HTTT, THHH, THHT, THTH, TTHH, TTTH, TTHT, THTT, TTTT}

प्रश्न 4.
एकं सिक्का उछाला गया है और एक पासा फेंका गया है।
हल:
एक सिक्का व एक पासा उछालने पर प्रतिदर्श समष्टि
s = {H1, H2, H3, H4, H2, H6, T1, T2, T3, T4, T5, T6}

प्रश्न 5.
एक सिक्का उछाला गया है और केवल उस दशा में, जब सिक्के पर चित्त प्रकट होता है एक पासा फेंका जाता है।
हल:
सिक्के पर चित्त आने से एक पासा फेंका जाता है (UPBoardSolutions.com) अन्यथा नहीं की प्रतिदर्श समष्टि
s = {H1, H2, H3, H4, H2, H6, T}

प्रश्न 6.
X कमरे में 2 लड़के और 2 लड़कियाँ तथा Y कमरे में 1 लड़का और 3 लड़कियाँ हैं। उस परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए जिसमें पहले एक कमरा चुना जाता है और फिर एक बच्चा चुना जाता है।
हल:
माना X कमरे के लड़के व लड़कियों को B1, B2, G1, G2 और Y कमरे के लड़के व लड़कियों को B3, G3, G4, G5 से दर्शाया गया है।
एक कमरे को चुनना और फिर एक बच्चे को चुने जाने की प्रतिदर्श समष्टि
S = {XB1, XB2, XG1, XG2, YB3, YG3, YG4, YG5}

प्रश्न 7.
एक पासा लाल रंग का, एक सफेद रंग का और एक अन्य पासा नीले रंग का एक थैले में रखे हैं। एक पासा यादृच्छया चुना गया और उसे फेंका गया है। पासे का रंग और इसके ऊपर के फलक पर प्राप्त संख्या को लिखा गया है। प्रतिदर्श समष्टि का वर्णन कीजिए।
हल:
माना लाल रंग को R से, सफेद रंग को W से तथा नीले रंग को B से दर्शाया गया हो तो पासे को चुन कर अंकों को प्राप्त करने की प्रतिदर्श समष्टि।
S = {R1, R2, R3, R4, R5, R6, W1, W2, W3, W4, W5, W6, B1, B2, B3, B4, B5, B6}

UP Board Solutions

प्रश्न 8.
एक परीक्षण में 2 बच्चों वाले पैरिवारों में से प्रत्येक में लड़के-लड़कियों की संख्या को लिखा जाता
(i) यदि हमारी रूचि इस बात को जानने में है कि जन्म के क्रम में बच्चा लड़का है या लड़की है तो प्रतिदर्श समष्टि क्या होगी ?
(ii) यदि हमारी रूचि किसी परिवार में लड़कियों की संख्या जानने में है तो प्रतिदर्श समष्टि क्या होगी ?
हल:
(i) परिवार में दो बच्चे हैं वे लड़के, लड़की हो सकते हैं। इनकी प्रतिदर्श समष्टि = {BB, BG, GB, GG}
(ii) एक परिवार में कोई लड़की न हो या एक या दो लड़कियाँ होगी। अतः प्रतिदर्श समष्टि {0, 1, 2}

प्रश्न 9.
एक डिब्बे में 1 लाल और एक जैसी 3 सफेद गेंद रखी गई हैं। दो गेंद उत्तरोत्तर (in succession) बिना प्रतिस्थापित किए यादृच्छया निकाली जाती है। इस परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए।
हल:
डिब्बे में एक लाल व 3 सफेद गेंद हैं। यदि लाल को R से, सफेद को W से निरूपित किया जाए तो इस प्रशिक्षण का प्रतिदर्श समष्टि
S = {RW, WR, WW}.

प्रश्न 10.
एक परीक्षण में एक सिक्के को उछाला जाता है और यदि उस पर चित्त प्रकट होता है तो उसे पुनः उछाला जाता है। यदि पहली बार उछालने पर पट् प्राप्त होता है तो एक पासा फेंका जाता है। प्रतिदर्श समष्टि ज्ञात कीजिए।
हल:
यदि एक सिक्का उछाला जाता है और चित्त प्रकट होता है (UPBoardSolutions.com) तो दुबारा उछालने पर चित्त या पट् आ सकता है। इस प्रकार घटना HH या HT होगी। पट् आने पर पासा फेंका जाता है। पासा फेंकने से संख्या 1, 2, 3, 4, 5, 6 आ सकती है।
प्रतिदर्श समष्टि = {HH, HT, T1,T2, T3, T4, T5, T6}.

प्रश्न 11.
मान लीजिए कि बल्बों के एक ढेर में से 3 बल्ब यादृच्छया निकाले जाते हैं। प्रत्येक बल्ब को जाँची जाता है और उसे खराब (D) या ठीक (N) में वर्गीकृत करते हैं। इस परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए।
हल:
खराब के लिए D और ठीक बल्ब को N द्वारा निरूपित करते हैं। तीन बल्बों से बना प्रतिदर्श समष्टि इस प्रकार है।
{DDD, DDN, DND, NDD, NND, NDN, DNN, NNN}

UP Board Solutions

प्रश्न 12.
एक सिक्का उछाला जाता है। यदि परिणाम चित्त हो तो एक पासा फेंका जाता है। यदि पासे पर एक सम संख्या प्रकट होती है, तो पासे को पुनः फेंका जाता है। इस परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए।
हल:
एक सिक्का उछालने पर यदि चित्त को H से और पट् को T से दर्शाया जाए और चित्त आने पर पासा फेंका जाता है H1, H2, H3, H4, H5, H6 की घटनाएँ हो सकती हैं। H2, H4, H6 आने की अवस्था में पासा दुबारा फेंका जाता है जिससे प्रत्येक की 1, 2, 3, 4, 5, 6 की छः घटनाएं हो सकती हैं।
इस प्रकार प्रतिदर्श समष्टि है : {T1, H1, H3, H5, H21, H22, H23, H24, H25, H26, H41, H42,H43, H44, H45, H46, H61, H62, H63, H64, H65, H66}

प्रश्न 13.
कागज की चार पर्चियों पर संख्याएँ 1, 2, 3, 4 अलग-अलग लिखी गई हैं। इन पर्चियों को एक डिब्बे में रख कर भली-भाँति मिलाया गया है। एक व्यक्ति डिब्बे में से दो पर्चियाँ एक के बाद दूसरी बिना प्रतिस्थापित किए निकालता है। इस परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए।
हल:
एक डिब्बे में चार पर्चियाँ हैं। जिन पर 1, 2, 3, 4 लिखा है। यदि पर्ची (UPBoardSolutions.com) सं. 1 पहली पर्ची हो दूसरी पर्ची पर सं. 2, 3, 4 लिखा होगा। इसी प्रकार पहली पर्ची पर 2 लिखा हो तो शेष पर्ची पर 1, 3, 4 लिखा होगा। इस प्रकार प्रतिदर्श समष्टि है :
{(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3)}

प्रश्न 14.
एक परीक्षण में एक पासा फेंका जाता है और यदि पासे पर प्राप्त संख्या सम है तो एक सिक्का एक बार उछाला जाता है। यदि पासे पर प्राप्त संख्या विषम है तो सिक्के को दो बार उछालते हैं। प्रतिदर्श समष्टि लिखिए।
हल:
पासा फेंकने से यदि सम संख्या प्राप्त होती है तो सिक्का उछालने पर H या T की घटना होगी। यदि पासे पर विषम संख्या आती है तो सिक्का दो बार उछाला जाता है जिससे HH, HT, TH, TT घटनाएँ हो सकती हैं। इस प्रकार प्रतिदर्श समष्टि इस प्रकार है-
{2H, 2T, 4H, 4T, 6H, 6T, 1HH, 1HT, 1TH, 1TT, 3HH, 3HT, 3TH, 3TT, 5HH, 5HT, 5TH, 5TT}.

UP Board Solutions

प्रश्न 15.
एक सिक्का उछाला गया यदि उस पर पट् प्रकट होता है तो एक डिब्बे में से जिसमें 2 लाल और 3 काली गेंदे रखी हैं, एक गेंद निकालते हैं। यदि सिक्के पर चित्त प्रकट होता है तो एक पासा फेंका जाता है। इस परीक्षण का प्रतिदर्श समष्टि लिखिए।
हल:
यदि लाल रंग की गेंद को R1, R2 से तथा काले रंग की गेंद को B1, B2, B3 से दर्शाया जाए तो सिक्का उछालने पर यदि पट् आतो है तो R1, R2, B1, B2, B3 में से एक घटना होगी। यदि सिक्के पर चित्त आता है तो पासा फेंकने से 1, 2, 3, 4, 5, 6 आते हैं। तो प्रतिदर्श समष्टि इस प्रकार है :
{TR1, TR2, TB1, TB2, TB3, H1, H2, H3, H4, H2, H6}.

प्रश्न 16.
एक पासे को बार-बार तब तक फेंका जाता है जब तक उस पर 6 प्रकट न हो जाए। इस परीक्षण का प्रतिदर्श समष्टि क्या है ?
हल:
6 आने पर पासा दुबारा नहीं फेंका जाएगा। यदि 1, 2, 3, 4, 5 में से कोई संख्या प्रकट होती है तो पासा दुबारा नहीं फेंका जाती। इस परीक्षण का प्रतिदर्श समष्टि है:
{6, (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (1, 1, 6), (1, 2, 6),… (1, 5, 6), (2, 1, 6), (2, 2, 6), …, (2, 5, 6),… (3, 1, 6), (3, 2, 6), …, (3, 5, 6), (4, 1, 6), (4, 2, 6), … (4, 5, 6), (5, 1, 6), (5, 2, 6),…, (5, 5, 6)….}.

UP Board Solutions

प्रश्नावली 16.2

प्रश्न 1.
एक पासा फेंका जाता है। मान लीजिए घटना E ‘पासे पर संख्या 4′ दर्शाता है और घटना F ‘पासे पर सम संख्या’ दर्शाता है। क्या E और F परस्पर अपवर्जी हैं?
हल:
पासा फेंकने पर प्रतिदर्श समष्टि = {1, 2, 3, 4, 5, 6}
E (संख्या 4 दर्शाता है) = {4}
F (सम संख्या) = {2, 4, 6}
E ∩ F = {4} ∩ {2, 4, 6} = {4} ≠ φ
अतः E और F परस्पर अपवर्जी नहीं हैं।

प्रश्न 2.
एक पासा फेंका जाता है। निम्नलिखित घटनाओं का वर्णन कीजिए:
(i) A : संख्या 7 से कम है।
(ii) B : संख्या 7 से बड़ी है।
(iii) C : संख्या 3 का गुणज है।
(iv) D : संख्या 4 से कम है।
(v) E : 4 से बड़ी सम संख्या है।
(vi) F : संख्या 3 से कम नहीं है।
A ∪ B, A ∩ B, B ∪ C, E ∪ F, D ∩ E, A – C, D – E, F’, E ∩ F’ भी ज्ञात कीजिए।
हल:
S = {1, 2, 3, 4, 5, 6}
(i) A : संख्या 7 से कम है = {1, 2, 3, 4, 5, 6}
(ii) B : संख्या 7 से बड़ी है = पासे में कोई संख्या 7 से बड़ी नहीं है।
(iii) C : संख्या 3 का गुणज है = {3, 6}
(iv) D : संख्या 4 से कम है = {1, 2, 3}
(v) E : 4 से बड़ी सम संख्या है = {6}
(vi) F = संख्या 3 से कम नहीं है। = {3, 4, 5, 6}
A ∪ B = {1, 2, 3, 4, 5, 6} ∪ φ = {1, 2, 3, 4, 5, 6}
A ∩ B = {1, 2, 3, 4, 5, 6} ∩ φ = φ
B ∪ C = φ ∪ {3, 6} = {3, 6}.
E ∪ F = {6} ∪ {3, 4, 5, 6} = {3, 4, 5, 6}.
D ∩ E = {1, 2, 3} ∩ {6} = φ.
A – C = {1, 2, 3, 4, 5, 6} – {3, 6} = {1, 2, 4, 5}.
F’ = {3, 4, 5, 6}’ = S – {3, 4, 5, 6} = (UPBoardSolutions.com) {1, 2, 3, 4, 5, 6} – {3, 4, 5, 6} = {1, 2}.
E ∩ F’ = {6} ∩ {3, 4, 5, 6}’ = {6} ∩ {1, 2} = φ.

UP Board Solutions

प्रश्न 3.
एक परीक्षण में पासे के एक जोड़े को फेंकते हैं और उन पर प्रकट संख्याओं को लिखते हैं। निम्नलिखित संख्याओं का वर्णन कीजिए।
A : प्राप्त संख्याओं का योग 8 से अधिक है।
B : दोनों पासों पर संख्या 2 प्रकट होती है।
C : प्रकट संख्याओं का योग कम से कम 7 है और 3 का गुणज है।
इन घटनाओं के कौन-कौन से युग्म परस्पर अपवर्जी हैं ?
हल:
जब दो पासे फेंके जाते हैं, तो कुल संभावित परिणामों की संख्या = 6 x 6 = 36
A = प्राप्त संख्याओं का योग 8 से अधिक है।
= {(3, 6), (4, 5), (5, 4), (6, 3), (4, 6), (5, 5), (6, 4), (5, 6), (6, 5), (6, 6)}
B = कम से कम एक पासे पर संख्या 2 प्रकट होती है।
= {(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (2, 1), (2, 3), (2, 4), (2, 5), (2, 6)}
C = प्रकट संख्याओं का योग कम से कम 7 है और 3 का गुणज है।
= प्रकट संख्याओं का योग 9 और 12 है जो कि 3 का गुणज है।
= {{3, 6), (6, 3), (4, 5), (5, 4), (6, 6)}
A ∩ C = {3, 6), (4, 5), (5, 4), (6, 3), (4, 6), (5, 5), (6, 4), (5, 6), (6, 5), (6, 6)} ∩ {(3, 6), (6, 3), (5, 4), (6, 6)}
= {(3, 6), (6, 3), (4, 5), (5,4), (6, 6)}
A ∩ B = {(3, 6), (6, 3), (4, 5), (5, 4), (4, 6), (6, 4), (5, 5), (5, 6), (6, 5), (6, 6) ∩ {(1, 2), (3, 2), (2, 1), (2, 3), (4, 2), (2, 4), (5, 2), (2, 5), (2, 6), (6, 2)} = φ
B ∩ C = {(1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (2, 4), (4, 2), (2, 5), (5, 2), (2, 6), (6, 2)} ∩ {(3, 6), (6, 3), (4, 5), (5, 4), (6, 6)} = φ
A ∩ B = φ, B ∩ C = φ अर्थात् A और B, B और C परस्पर अपवर्जी हैं।
परन्तु A ∩ C ≠ φ , अत: A और C परस्पर अपवर्जी नहीं हैं।

UP Board Solutions

प्रश्न 4.
तीन सिक्कों को एक बार उछाला जाता है। मान लीजिए कि घटना “तीन चित्त दिखना” को A से, घटना 2 चित्त और 1 पट् दिखना’ को B से, घटना “3 पट लिखना’ को C से और घटना ‘पहले सिक्के पर चित्त दिखना’ को D से निरूपित किया गया है। बताइए कि इनमें से कौन-सी घटनाएँ
(i) परस्पर अपवर्जी हैं ?
(ii) सरल हैं।
(iii) मिश्र हैं ?
हल:
जब तीन सिक्के उछाले जाते हैं तो प्रतिदर्श समष्टि
S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT},
A : तीन चित्त दिखना = {HHH}
B : दो चित्त और एक पट् दिखना = {HHT, HTH, THH}
C : तीन पट् दिखना = {TTT}
D : पहले सिक्के पर चित्त दिखना = (UPBoardSolutions.com) {HHH, HHT, HTH, HTT}
(i) A ∩ B = {HHH} ∩ {HHT, HTH, THH} = φ
A ∩ C = {HHH} ∩ {TTT} = φ
A ∩ D = {HHH} ∩ {HHH, HHT, HTH, HTT} = {HHH} ≠ φ
B ∩ C = {HHT, HTH, THH} ∩ {TTT} = φ
B ∩ D = {HHT, HTH, THH} ∩{HHH, HHT, HTH, HTT} = (HHT, HTH} ≠ φ
C ∩ D = {TTT} ∩ {HHH, HHT, HTH, HTT} = φ
A ∩ B ∩ C = {HHH} ∩ {HHT, HTH, THH} ∩ {TTT}
अत: परस्पर अपवर्जी घटनाएँ।
A और B, A और C, B और C, C और D, A, B और C.
(ii) सरल घटनाएँ : A और C
(iii) मिश्र घटनाएँ : B और D.

प्रश्न 5.
तीन सिक्के एक बार उछाले जाते हैं। वर्णन कीजिए
(i) दो घटनाएँ जो परस्पर अपवर्जी हैं।
(ii) तीन घटनाएँ जो परस्पर अपवर्जी और नि:शेष हैं।
(iii) दो घटनाएँ जो परस्पर अपवर्जी नहीं हैं।
(iv) दो घटनाएँ जो परस्पर अपवर्जी हैं किन्तु निःशेष नहीं हैं।
(v) तीन घटनाएँ जो परस्पर अपवर्जी हैं किन्तु निःशेष नहीं हैं।
हल:
(i) दो घटनाएँ जो परस्पर अपवर्जी हैं।
A = कम से कम दो चित्त प्राप्त करना = {HHH, HHT, HTH, THH}
B = कम से कर्मी पप्रसि (करमा = {TTT, TTH, THT, HTT}
(ii) तीन घटनाएँ A, B, C जो परस्पर अपवर्जी और नि:शेष हैं।
A = अधिक से अधिक एक चित्त प्राप्त करना | = {TTT, TTH, THT, HTT}
B = तथ्यत, 2 चित्त प्राप्त करना = {HHT, HTH, THH}
C = तथ्यतः, 3 चित्त प्राप्त करना = {HHH}
(iii) दो घटनाएँ A और B जो परस्पर अपवर्जी नहीं हैं।
A : अधिकतम 2 पट् प्राप्त करन = {HHH, HHT, HTH, THH, TTH, THT, HTT}
B : तथ्यतः 2 चित्त प्राप्त करना = {HHT, HTH, THH}
A ∩ B = {HHT, HTH, THH} ≠ φ
(iv) दो घटनाएँ A और B जो परस्पर अपवर्जी हैं किन्तु निःशेष नहीं हैं।
A : तथ्यतः एक चित्त प्राप्त करना = {TTH, THT, HTT}
B : तथ्यत: 2 चित्त प्राप्त करना = {HHT, HTH, THH)
(v) तीन घटनाएँ A, B, C जो परस्पर उपवर्जी हैं किन्तु नि:शेष नहीं हैं।
A : तथ्यत: एक पट् प्राप्त करना = {HHT, THT, THH}
B : तथ्यतः 2 पट् प्राप्त करना = {TTH, THT, HTT}
C : तथ्यतः 3 पट् प्राप्त करना = {TTT}
[नोट : घटनाएँ भिन्न-भिन्न भी हो सकती हैं।

UP Board Solutions

प्रश्न 6.
दो पासे फेंके जाते हैं। घटनाएँ A, B और C निम्नलिखित प्रकार से हैं:
A : पहले पासे पर सम संख्या प्राप्त होना।
B : पहले पासे पर विषम संख्या प्राप्त होना।
C : पासों पर प्राप्त संख्याओं का योग ≤ 5 होना।
निम्नलिखित घटनाओं का वर्णन कीजिए:
(i) A’
(ii) B – नहीं
(iii) A या B
(iv) A और B
(v) A किन्तु C नहीं
(vi) B या C
(vii)B और C
(viii) A ∩B’ ∩ C’
हल:
दो सिक्के फेंकने पर प्रतिदर्श समष्टि
S = {(1, 1), (1, 2), …
(1, 6), (2, 1), (2, 2), …
(2, 6), (3, 1), (3, 2), …
(3, 6), (4, 1), (4, 2),…
(4, 6), (5, 1), (5, 2),…
(5, 6), (6, 1), … (6, 6)}
A = पहले पासे पर सम संख्या प्राप्त होगा।
= {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)} = A
B = पहले पासे पर विषम संख्या प्राप्त होना। (UPBoardSolutions.com)
= {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(3, 1), (3, 2), (3, 3), (3, 4),(3, 5), (3, 6),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)}
C = पासों पर प्राप्त संख्याओं का योग ≤ 5 होना।
= {(1, 1), (1, 2), (1, 3), (1, 4),
(2, 1), (2, 2), (2, 3),
(3, 1), (3, 2), (4, 1)}
(i) A’ = S – A
= {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)}
= B

UP Board Solutions
(ii) B-नहीं = B’ = पहले पासे पर विषम संख्या का न होना
= {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}
= A
(ii) A या B = A ∪ B = {x : x पहले पासे पर सम संख्या का होना} ∪ {पहले पासे पर विषम संख्या का होना}
= S
(iv) A और B = A ∩ B
= {x : x पहले पासे पर सम संख्या का होना} {पहले पासे पर विषम संख्या का होना}
= φ
(v) A किन्तु C- नहीं
= {x : x पहले पासे पर सम संख्या का होना} – {पासों पर प्राप्त संख्याओं का योग ≤ 5}
A – C= {(2, 1), (2, 2), …, (2, 6), (4, 1), (4, 2), … (4, 2), … (4, 6), (6, 1), (6, 2), …. (6, 6)} – {(1, 1), (1, 2), (1, 3), (1,4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}
= {(2, 4), (2, 5), (2, 6), (4, 2), (4, 3),… (4, 6), (6, 1), (6, 2), … (6, 6)}
(vi) B या C = B ∪ C = {x : x, पहले पारसे पर विषम संख्या होगा। ∪ {पासों पर प्राप्त संख्याओं का योग ≤ 5}
= {(1, 1), (1, 2), …, (1, 6), (3, 1), (3, 2), …, (3, 6), (5, 1), (5, 2), … (5, 6)} ∪ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 2), (4, 1)} = {(1,1), (1, 2), … (1, 6), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), … (3, 6), (4, 1), (5,1), (5, 2), (5, 3), … (5, 6).
(vii) B और C अर्थात्
B ∩ C = {(1, 1), … (1, 6), (3, 1), (3, 2),… (3, 6), (5, 1), (5, 2), (5, 3), … (5, 6)} ∩ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), 72, 2) (2, 3), (3, 1), (3, 2), (4, 1)}.
= {(1, 1), (1, 2), (1, 3), (1, 4), (3, 1), (3, 2)}
(viii) यहाँ B’ = A
A ∩ B’ = A ∩ A = A
A ∩ B’ ∩ C’ = {(2, 1), (2, 2), … (2, 6), (4, 1), (4, 2),…,(4, 6), (6, 1), (6, 2),… (6, 6)} ∩ {(1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6), (4, 2), (4, 3),…(4, 6), (5, 1), (5, 2),… (5, 6), (6, 1), (6, 2), …. (6, 5)}
= {(2, 4), (2, 5), (2, 6), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}.

UP Board Solutions

प्रश्न 7.
उपर्युक्त प्रश्न 6 को देखिए और निम्नलिखित में सत्य या असत्य बताइए (अपने उत्तर का कारण दीजिए:
(i) A और B परस्पर अपवर्जी हैं।
(ii) A और B परस्पर अपवर्जी और नि:शेष हैं।
(iii) A = B’
(iv) A और C परस्पर अपवर्जी हैं।
(v) A और B’ परस्पर अपवर्जी हैं।
(vi) A’, B’, C परस्पर अपवर्जी और निःशेष घटनाएँ हैं।
हल:
(i) सत्ये।
A : पहले पासे पर सम संख्या का होना
B : पहले पासे पर विषम संख्या का होना A और B में कोई भी घटना सभान नहीं है।
A ∩ B = φ ⇒ A और B परस्पर अपवर्जी घटनाएँ हैं।
(ii) सत्य :
A : पहले पासे पर सम संख्या होना
B : पहले पासे पर विषम संख्या होना
A ∪ B = पहले पासे पर सम या विषम कोई (UPBoardSolutions.com) भी संख्या हो सकती है, दूसरे पासे पर 1 से 6 तक कोई भी संख्या हो सकती है।
अर्थात् A और B परस्पर अपवर्जी और नि:शेष घटनाएँ हैं।
(iii) सत्य :
B’ = {पहले पासे पर विषम संख्या होना}
= पहले पासे पर विषम संख्या न होना
= पहले पासे पर सम संख्या होना।
= A
(iv) असत्य
A = पहले पासे पर सम संख्या होना
C = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}
A और C में (2, 1), (2, 2), (2, 3), (4, 1) समान घटनाएँ हैं।
A ∩ C ≠ φ
अतः A और C परस्पर अपवर्जी नहीं हैं।
(v) असत्य B’ = A
A ∩ B’ = A ∩ A = A ≠ φ
A तथा B’ परस्पर अपवर्जी नहीं हैं।
(vi) असत्य A’ = B, B’ = A
A’ ∩ B’ = B ∩ A = φ
परन्तु A’ ∩ C = B ∩ C = {x : x पहले पासे पर विषम संख्या होना} {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}
= {(1,1), (1, 2), (1, 3), (1, 4), (3, 1), (3, 2)} ≠ φ
B’ ∩ C = A ∩ C [B’ = A]
= {x : x, पहले पासे पर सम संख्या का होना} ∩ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}
(2, 1), (2, 2), (2, 3), (4, 1), A और C दोनों में समान घटनाएँ हैं।
B’ ∩ C ≠ φ
अर्थात् A’, B’, और C परस्पर अपवर्जी नहीं हैं और न ही नि:शेष हैं।

UP Board Solutions

प्रश्नावली 16.3

प्रश्न 1.
प्रतिदर्श समष्टि S = {ω1, ω2, ω3, ω4, ω5, ω6} के परिणामों के लिए निम्नलिखित में से कौन से प्रायिकता निर्धारण वैध नहीं हैं:
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 1
हल:
(a) 0.1 + 0.01 + 0.05 + 0.03 + 0.01 + 0.2 + 0.6 = 1.00
घटनाओं की दी गयी प्रायिकता को योगफल 1 है।
अतः निर्धारित प्रायिकता वैध है।
(b) दी गयी प्रायिकताओं का योगफल
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 1.1
दी गयी प्रायिकता वैध है।
(c) दी हुई प्रायिकताओं का योग’ = 0.1 + 0.1 + 0.3 + 0.4 + 0.5 + 0.6 + 0.7 = 2.7
यह एक से अधिक है।
अतः दी गयी प्रायिकता वैध नहीं है।
(d) किसी भी घटना की प्रायिकता ऋणात्मक नहीं हो सकती। यहाँ पर दो प्रायिकताएँ – 0.1 और -0.2 ऋणात्मक हैं।
अतः दी गयी प्रायिकता वैध नहीं है।
(e) दी गयी प्रायिकताओं का योगफल
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 1.2
जो कि एक से अधिक है।
अतः दी गयी प्रायिकता वैध नहीं है।

UP Board Solutions

प्रश्न 2.
एक सिक्का दो बार उछाला जाता है। कम से कम एक पट् प्राप्त होने की क्या प्रायिकता है?
हल:
दिए हुए परीक्षण का प्रतिदर्श समष्टि
S = {HH, HT, TH, TT}
कुल सम्भावित परिणामों की संख्या = 4
कम से कम एक पट् प्राप्त करने के तरीके TH, HT, TT = 3
एक सिक्के को दो बार उछालने से कम से कम 1 पट् प्राप्त करने की प्रायिकता = [latex s=2]\frac { 3 }{ 4 }[/latex]

प्रश्न 3.
एक पासा फेंका जाता है। निम्नलिखित घटनाओं की प्रायिकता ज्ञात कीजिए:
(i) एक अभाज्य संख्या प्रकट होना।
(ii) 3 या 3 से बड़ी संख्या प्रकट होना।
(iii) 1 या 1 से छोटी संख्या प्रकट होना।
(iv) छः से बड़ी संख्या प्रकट होना।
(v) छः से छोटी संख्या प्रकट होना।
हल:
एक पासे को फेंकने में परीक्षण का प्रतिदर्श समष्टि
S = {1, 2, 3, 4, 5, 6}
अर्थात् कुल सम्भावित परिणाम
n(S) = 6
(i) अभाज्य संख्याएँ 2, 3, 5 हैं।
n (A) = 3
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 3

UP Board Solutions

प्रश्न 4.
ताश की एक गड्डी के 52 पत्तों में से एक पत्ता यादृच्छया निकाला गया है।
(a) प्रतिदर्श समष्टि में कितने बिन्दु हैं ?
(b) पत्ते का हुकुम का इक्का होने की प्रायिकता क्या है ?
(c) प्रायिकता ज्ञात कीजिए कि पत्ता
(i) इक्का है
(ii) काले रंग का है।
हल:
(a) ताश की गड्डी में कुल 52 पत्ते होते हैं। जब एक पत्ता निकाला जाता है तो इसके प्रतिदर्श समष्टि में 52 बिन्दु होते हैं।
(b) ताश की गड्डी में हुकुम का एक इक्का होता है। यदि एक पत्ता निकालने की घटना को A से दर्शाया जाए।
n(A) = 1, n(S) = 52
P(A) = P(हुकुम का इक्का ) = (UPBoardSolutions.com) [latex s=2]\frac { 1 }{ 52 }[/latex]
(c) (i) यदि B इक्का निकालने को दर्शाता हो तो
n(B) = 4 [ताश की गड्डी में 4 इक्के होते हैं।]
n(S) = 52
P(B) = [latex s=2]\frac { 1 }{ 13 }[/latex]
(ii) C काले रंग हुकुम की पत्ते आने की घटना को दर्शाता है।
n(C) = 26 [ ताश की गड्डी में 26 काले पत्ते होते हैं।
n(C) = 52
P(C) = [latex s=2]\frac { 26 }{ 52 }[/latex] = [latex s=2]\frac { 1 }{ 2 }[/latex]

प्रश्न 5.
एक अनभिनत (unbiased) सिक्का जिसके एक तल पर 1 और दूसरे तल पर 6 अंकित है तथा एक अनभिनत पासा दोनों को उछाला जाता है। प्रायिकता ज्ञात कीजिए कि प्रकट संख्याओं का योग
(i) 3 है
(ii) 12 है।
हल:
एक पासे पर 1 व 6 अंकित है और दूसरे पर 1, 2, 3, 4, 5, 6.
प्रतिदर्श समष्टि = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}
(i) दी गयी., संख्याओं का योग 3 घटना (1, 2) से प्राप्त होता है।
अनुकूल परिणामों की संख्या = 1
प्रायिकता जेब प्राप्त संख्याओं का योग 3 है = [latex s=2]\frac { 1 }{ 12 }[/latex]
(ii) दी गयी संख्याओं को योग घटना (6, 6) से प्राप्त होता है। यहाँ अनुकूल परिणामों की संख्या = 1
प्रायिकता जब प्राप्त संख्याओं का योग 12 है = [latex s=2]\frac { 1 }{ 12 }[/latex]

UP Board Solutions

प्रश्न 6.
नगर परिषद् में चार पुरुष के छः स्त्रियाँ हैं। यदि एक समिति के लिए यादृच्छया एक परिषद् सदस्य चुना गया है तो एक स्त्री के चुने जाने की कितनी सम्भावना है ?
हल:
नगर परिषद् में चार पुरुष व छः स्त्रियाँ हैं।
उनमें से किसी एक को चुनने के तरीके = 10[latex]{ C }_{ 1 }[/latex]
कुल सम्भावित परिणामों की संख्या = 10
कुल 6 स्त्रियाँ हैं। उनमें से एक स्त्री को चुनने के तरीके = 6.
अनुकूल परिणामों की संख्या = 6
एक स्त्री को चुने जाने की प्रायिकता = [latex s=2]\frac { 6 }{ 10 }[/latex] = [latex s=2]\frac { 6 }{ 5 }[/latex]

प्रश्न 7.
एक अनभिनत सिक्के को चार बार उछाला जाता है और एक व्यक्ति प्रत्येक चित्त पर एक रूपया जीतता है और प्रत्येक पट् पर 1.50 रू हारता है। इस परीक्षण के प्रतिदर्श समष्टि से ज्ञात कीजिए कि आप चार उछालों में कितनी विभिन्न राशियाँ प्राप्त कर सकते हैं। साथ ही इन राशियों से प्रत्येक की प्रायिकता भी ज्ञात कीजिए।
हल:
सिक्के की उछाल में पाँच तरीकों से चित्त प्राप्त कर सकते हैं। जो निम्न प्रकार हैं।
कुल संभावित परिणाम = {HHHH, HHHT, HHTH, HHTT, HTHH, HTHT, HTTH, HTTT, THHH, THHT, THTH, THTT, TTHH, TTHT, TTTH, TTTT}
(i) कोई भी चित्त प्राप्त नहीं होता या चारों पट् प्राप्त होते हैं।
चारों पट् के आने पर हानि = 4 x 1.50 = 6
चार पट् प्राप्त करने के तरीके (TTTT) = 1
कुल सम्भावित परिणाम = 16
चार पट् प्राप्त करने की प्रायिकता = [latex s=2]\frac { 1 }{ 16 }[/latex]

(ii) जब एक चित्त और 3 पट् प्राप्त होते हैं।
हानि = 3 x 1.50 – 1 x 1 = 4.50 – 1.00 = 3.50 रू
एक चित्त और 3.पट् इस प्रकार आ सकते हैं:
{TTTH, THT, THTT, HTTT}
4 तरीकों से एके चित्त और 3 पट् प्राप्त हो सकते हैं।
कुल सम्भावित परिणाम = 16
एक चित्त प्राप्त करने की प्रायिकता = [latex s=2]\frac { 4 }{ 16 }[/latex] = [latex s=2]\frac { 1 }{ 4 }[/latex]

(iii) जब 2 चित्त और 2 पट् प्रकट होते हैं।
हानि = 2 x 1.5 – 1 x 2 = 3 – 2 = 1 रू
2 चित्त और 2 पट् इस प्रकार प्राप्त हो सकते हैं।
{ÉHTT, HTHT, HTTH, THHT, THTH, TTHH}
छः तरीकों से 2 चित्त और 2 पट् प्राप्त हो सकते हैं।
कुल सम्भावित परिणाम = 16
2 चित्त प्राप्त करने की प्रायिकता = [latex s=2]\frac { 6 }{ 16 }[/latex] = [latex s=2]\frac { 3 }{ 8 }[/latex]

(iv) जब 3 चित्त और 1 पट् प्रकट होता है, तब
लाभ = 3 x 1 – 1 x 1.5 = 3 – 1.30 = 1.50 रू
3 चित्त प्राप्त करने के तरीके = {HHHT, HHHH, HTHH, THHH}
चार तरीकों से 3 चित्त और 1 पट् प्राप्त होता है।
कुल सम्भावित परिणाम = 16
3 चित्त प्राप्त करने की प्रायिकता = [latex s=2]\frac { 4 }{ 16 }[/latex] = [latex s=2]\frac { 1 }{ 4 }[/latex]

(v) चारों चित्त एक तरीके से प्राप्त कर सकते हैं, तब
लाभ = 4 x 1 = 4 रू
कुल सम्भावित परिणाम = 16
चार चित्त प्राप्त करने की प्रायिकता = [latex s=2]\frac { 1 }{ 16 }[/latex]

UP Board Solutions

प्रश्न 8.
तीन सिक्के एक बार उछाले जाते हैं। निम्नलिखित की प्रायिकता ज्ञात कीजिए:
(i) तीन चित्त प्रकट होना
(ii) 2 चित्त प्रकट होना
(iii) न्यूनतम 2 चित्त प्रकट होना
(iv) अधिकतम 2 चित्त प्रकट होना
(v) एक भी’चित्त प्रकट न होना
(vi) 3 पट् प्रकट होना
(vii) तथ्यतः 2पट् प्रकट होना
(viii) कोई भी पट् प्रकट न होना,
(ix) अधिकतम पट् प्रकट होना
हल:
यदि 3 सिक्के उछाले जाते हैं तो परीक्षण का प्रतिदर्श समष्टि
S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}
कुल सम्भावित परिणाम = 8
(i) तीन चित्त {HHH} एक तरीके से प्रकट होता है।
अत: 3 चित्त प्राप्त करने की प्रायिकता = [latex s=2]\frac { 1 }{ 8 }[/latex]

(ii) 2 चित्त या 2 चित्त 1 पट् प्राप्त करने के HHT, HTH, THH तीन तरीके हैं।
कुल सम्भावित परिणाम = 8
2 चित्त प्रकट होने की प्रायिकता (UPBoardSolutions.com) = [latex s=2]\frac { 3 }{ 8 }[/latex]

(iii) न्यूनतम 2 चित्त प्राप्त करने के लिए
2 चित्त 1 पट् या 3 चित्त आएंगे
न्यूनतम 2 चित्त HHT, HTH, THH, HHH, चार तरीकों से प्रकट हो सकते हैं।
अतः न्यूनतम 2 चित्त प्रकट होने की प्रायिकता = [latex s=2]\frac { 4 }{ 8 }[/latex] = [latex s=2]\frac { 1 }{ 2 }[/latex]

(iv) अधिकतम 2 चित्त, इस प्रकार प्रकट होंगे।
(a) कोई चित्त नहीं या तीन पट्
(b) एक चित्त 2 पट्
(c) 2 चित्त 1 पट्
यह {TTT, HTT, THT, TTH, HHT, HTH, THH} सात तरीकों से प्रकट हो सकते हैं।
कुल संभावित परिणाम = 8
अधिकतम 2 चित्त प्रकट होने की प्रायिकता = [latex s=2]\frac { 7 }{ 8 }[/latex]

(v) एक भी चित्त न आने का अर्थ है तीन पट् प्रकट होना जो (TTT) एक तरीके से हो सकता है।
कुल संभावित परिणाम = 8
अतः एक भी चित्त न आने की प्रायिकता = [latex s=2]\frac { 1 }{ 8 }[/latex]

(vi) तीन पट् (TTT) एक तरीके से प्रकट हो सकते हैं।
तीन पट् प्रकट होने की प्रायिकता = [latex s=2]\frac { 1 }{ 8 }[/latex]

(vii) तथ्यत: 2 सट् (TTH, THT, HTT) तीन तरीकों से प्राप्त हो सकते हैं।
कुल संभावित परिणाम = 8
दो पट् प्रकट होने की प्रायिकता = [latex s=2]\frac { 3 }{ 8 }[/latex]

(viii) कोई पट् नहीं का अर्थ है तीनों चित्त प्रकट होते हैं तो (HHH) 1 तरीके से ही हो सकता है।
कुल संभावित परिणाम = 8
कोई पट् प्रकट न होने की प्रायिकता = [latex s=2]\frac { 1 }{ 8 }[/latex]

(ix) अधिकतम दो पट् प्रकट होना = तीनों पट् प्रकट नहीं होते।
तीनों पट् प्रकट होने की प्रायिकता = [latex s=2]\frac { 1 }{ 8 }[/latex]
अधिकतम दो पट् प्रकट होने की प्रायिकता = 1 – (तीनों पट् प्रकट होने की प्रायिकता)
= 1 – [latex s=2]\frac { 1 }{ 8 }[/latex] = [latex s=2]\frac { 7 }{ 8 }[/latex]

UP Board Solutions

प्रश्न 9.
यदि किसी घटना A की प्रायिकता [latex s=2]\frac { 2 }{ 11 }[/latex] है तो घटना A – नहीं’ की प्रायिकता ज्ञात कीजिए।
हल:
P(A) = [latex s=2]\frac { 2 }{ 11 }[/latex]
P(A – नहीं) = P (A’) = 1 – P(A)
= 1 – [latex s=2]\frac { 2 }{ 11 }[/latex] = [latex s=2]\frac { 9 }{ 11 }[/latex]

प्रश्न 10.
शब्द ASSASSINATION’ से एक अक्षर यादृच्छया चुना जाता है। प्रायिकता ज्ञात कीजिए कि चुना गया अक्षर
(i) एक स्वर (vowel) है
(ii) एक व्यंजन (consonant) है।
हल:
शब्द ASSASSINATION में कुल 13 अक्षर हैं जिसमें (AAAIIO) 6 स्वर और (SSSSNNT) 7 व्यंजन है।
n(S) = 13
स्वरों की संख्या = 6
एक स्वर चुनने की प्रायिकता = [latex s=2]\frac { 6 }{ 13 }[/latex]
(ii) व्यंजनों की संख्या = 7
n(S) = 13
एक व्यंजन चुनने की प्रायिकता (UPBoardSolutions.com) = [latex s=2]\frac { 7 }{ 13 }[/latex]

प्रश्न 11.
एक लाटरी में एक व्यक्ति 1 से 20 तक की संख्याओं में से छः भिन्न-भिन्न संख्याएँ यादृच्छया चुनता है और यदि ये चुनी गईं छः संख्याएँ उन छः संख्याओं से मेल खाती हैं जिन्हें लाटरी समिति ने पूर्व निर्धारित कर रखा है, तो वह व्यक्ति इनाम जीत जाता है। लाटरी के खेल में इनाम जीतने की प्रायिकता क्या है ?
हल:
1 से 20 तक की प्राकृत संख्याओं में से 6 संख्या चुनने के तरीके (UPBoardSolutions.com) = 20[latex]{ C }_{ 6 }[/latex]
= [latex s=2]\frac { 20\times 19\times 18\times 17\times 16\times 15 }{ 1\times 2\times 3\times 4\times 5\times 6 }[/latex]
= 38760
केवल एक ही अनुकूल परिणाम है।
अतः लाटरी जीतने की प्रायिकता = [latex s=2]\frac { 1 }{ 38760 }[/latex]

UP Board Solutions

प्रश्न 12.
जाँच कीजिए कि निम्न प्रायिकताएँ PA) और P(B) युक्ति संगत (consistency) परिभाषित की गई हैं।
(i) P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6
(ii) PA) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8
हल:
(i) दिया है : P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6
यहाँ P(A ∩ B) = 0.6 > P(A)
अत: P(A) और P(B) युक्ति संगत नहीं है।
(ii) यहाँ पर P(A) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8
अब P(A ∩ B) = P(A) + P(B) – P(A ∪ B) = 0.5 + 0.4 – 0.8
P(A ∩ B) = 0.1,
अत: P(A) और P(B) युक्ति संगत है।

प्रश्न 13.
निम्नलिखित सारणी में खाली स्थान भरिए:
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 13
हल:
(i) P(A) = [latex s=2]\frac { 1 }{ 3 }[/latex], P(B) = [latex s=2]\frac { 1 }{ 5 }[/latex], P(A ∩ B) = [latex s=2]\frac { 1 }{ 15 }[/latex], P(A ∪ B) = ?
P(A ∪ B) = P(A) + PB) – P(A ∩ B)
= [latex s=2]\frac { 1 }{ 3 }[/latex] + [latex s=2]\frac { 1 }{ 5 }[/latex] – [latex s=2]\frac { 1 }{ 15 }[/latex]
= [latex s=2]\frac { 8 }{ 15 }[/latex] – [latex s=2]\frac { 1 }{ 15 }[/latex]
= [latex s=2]\frac { 7 }{ 15 }[/latex]
(ii) P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
0.6 = 0.35 + P(B) – 0.25
P(B) = 0.6 – 0.35 + 0.25 = 0.5.
(iii) P (A ∪ B) = P(A) + P(B) – P(A ∩ B)
0.7 = 0.5 + 0.35 – P(A ∩ B)
P(A ∩ B) = 0.5 + 0.35 – 0.7 = 0.15.

UP Board Solutions

प्रश्न 14.
P(A) = [latex s=2]\frac { 3 }{ 5 }[/latex] और P(B) = [latex s=2]\frac { 1 }{ 5 }[/latex] द्विा गया है। यदि A और B परस्पर अपवर्जी घटनाएँ हैं, तो P(A या B) ज्ञात कीजिए।
हल:
A और B परस्पर अपवर्जी घटनाएँ हैं, तब
P(A ∩ B) = 0
P(A) = [latex s=2]\frac { 3 }{ 5 }[/latex], P(B) = [latex s=2]\frac { 1 }{ 5 }[/latex]
P(A या B) = P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
P(A ∪ B) = [latex s=2]\frac { 3 }{ 5 }[/latex] + [latex s=2]\frac { 1 }{ 5 }[/latex] – 0 = 3

प्रश्न 15.
यदि E और Fघटनाएँ इस प्रकार की हैं कि P(E) = [latex s=2]\frac { 1 }{ 4 }[/latex], P(F) = [latex s=2]\frac { 1 }{ 2 }[/latex], और P(E और F) = [latex s=2]\frac { 1 }{ 8 }[/latex] तो ज्ञात कीजिए
(i) P(E या F)
(ii) P(E- नहीं और F- नहीं)।
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 15

प्रश्न 16.
घटनाएँ E और F इस प्रकार हैं कि P(E-नहीं और F- नहीं) = 0.25, बताइए कि E और F परस्पर अपवर्जी हैं या नहीं।
हल:
PE – नहीं और F – नहीं) = P(E’ ∩ F’)
= P[(E ∪ F)’]
अर्थात् = 1 – P(E ∪ F) = 0.25
P(E ∪ F) = 1 – 0.25 = 0.75
P(E ∪ F) ≠ 0 इसलिए E और F परस्पर अपवर्जी नहीं है।

प्रश्न 17.
घटनाएँ A और B इस प्रकार हैं कि P(A) = 0.42, P(B) = 0.48 और P(A और B) = 0.16, ज्ञात कीजिए:
(i) P(A – नहीं)
(ii) P (B- नहीं)
(iii) P(A या B)
हल:
P(A) = 0.42, P(B) = 0.48.
P(A और B) = P(A ∩ B) = 0.16
(i) P(A – नहीं) = P(A’) = 1 – P(A) = 1 – 0.42 = 0.58.
(ii) P(B – नहीं) = P(B’) = 1 – P(B) = 1 – 0.48 = 0.52.
(iii) P(A या B) = P (A ∪ B) = (UPBoardSolutions.com) P(A) + P(B) – P(A ∩ B)
= 0.42 + 0.48 – 0.16 = 0.90 – 0.16 = 0.74.

UP Board Solutions

प्रश्न 18.
एक पाठशाला की कक्षा XI के 40% विद्यार्थी गणित पढ़ते हैं और 30% जीव विज्ञान पढ़ते हैं। कक्षा के 10% विद्यार्थी गणित और जीव विज्ञान दोनों पढ़ते हैं । यदि कक्षा का एक विद्यार्थी यादृच्छया चुना जाता है, तो प्रायिकता ज्ञात कीजिए कि वह गणित या जीव विज्ञान पढ़ता होगा।
हल:
एक पाठशाला के 40% विद्यार्थी गणित पढ़ते हैं।
गणित पढ़ने वाले विद्यार्थी की प्रायिकता P(M) = [latex s=2]\frac { 40 }{ 100 }[/latex] = 0.4
30% विद्यार्थी जीव विज्ञान पढ़ते हैं।
जीव विज्ञान पढ़ने वाले विद्यार्थी की प्रायिकता P(B) = [latex s=2]\frac { 30 }{ 100 }[/latex] = 0.3
10% विद्यार्थी गणित और जीव विज्ञान दोनों पढ़ते हैं।
गणित और जीव विज्ञान वाले विद्यार्थियों की प्रायिकता, P(M ∩B)
= [latex s=2]\frac { 10 }{ 100 }[/latex] = 0.1
अब एक विद्यार्थी यादृच्छया चुना गया हो, तब उस विद्यार्थी द्वारा गणित या जीव विज्ञान लिए गए विषय की प्रायिकता
P(M ∪ B) = P(M) + P(B) – P(M ∩ B) = 0.4 + 0.3 – 0.1 = 0.6

प्रश्न 19.
एक प्रवेश परीक्षा की दो परीक्षणों (Tests) के आधार पर श्रेणीबद्ध किया जाता है। किसी यादृच्छया चुने गए विद्यार्थी की पहले परीक्षण में उत्तीर्ण होने की प्रायिकता 0.8 है और दूसरे परीक्षण में उत्तीर्ण होने की प्रायिकता 0.7 है। दोनों में से कम से कम एक परीक्षण उत्तीर्ण करने की प्रायिकता 0.95 है। दोनों परीक्षणों को उत्तीर्ण करने की प्रायिकता क्या है?
हल:
माना A और B क्रमशः पहले और दूसरे परीक्षण में उत्तीर्ण होने को दर्शाते हैं।
P(A) = 0.8, P(B) = 0.7
कम से कम एक परीक्षण में उत्तीर्ण होने की (UPBoardSolutions.com) प्रायिकता = 1 – P(A ∩ B’) = 0.95
P(A’ ∩ B’) = 1 – 0.95 = 0.05.
A’ ∩ B’ = (A ∪ B)’ (डी-मोर्गन नियम से)
P(A’ ∩ B’) = P(A ∪ B)’ = 1 – P(A ∪ B) = 0.05
P(A ∪ B) = 1 – 0.05 = 0.95
P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
0.95 = 0.8 + 0.7 – P(A ∩ B)
P(A ∩ B) = 1.5 – 0.95 = 0.55
इस प्रकार दोनों परीक्षणों को उत्तीर्ण करने की प्रायिकता = 0.55.

प्रश्न 20.
एक विद्यार्थी के अंतिम परीक्षा के अंग्रेजी और हिन्दी दोनों विषयों को उत्तीर्ण करने की प्रायिकता 0.5 है और दोनों में से कोई भी विषय उत्तीर्ण न करने की प्रायिकता 0.1 है। यदि अंग्रेजी की परीक्षा उत्तीर्ण करने की प्रायिकता 0.75 हो तो हिन्दी की परीक्षा उत्तीर्ण करने की प्रायिकता क्या है?
हल:
माना E और H क्रमशः अंग्रेजी और हिन्दी में पास करने को दर्शाते हैं।
तब अंग्रेजी और हिन्दी दोनों परीक्षा में उत्तीर्ण होने की प्रायिकता
P(E ∩ H) = 0.5
दोनों में से कोई परीक्षा उत्तीर्ण न करने की प्रायिकता = P(E’ ∩ H’) = 0.1
P[(E U H)’] = 1 – P(E ∪ H) = 0.1
P(E ∪ H) = 1 – 0.1 = 0.9
अंग्रेजी परीक्षा में उत्तीर्ण होने की प्रायिकता = P(E) = 0.75
अतः P(E ∪H) = 0.9, P(E) = 0.75, P(E ∩ H) = 0.5
P(E ∪ H) = P(E) + P(H) – P(E ∩ H)
0.9 = 0.75 + P(H) – 0.5
P(H) = 0.9 + 0.5 – 0.75 = 1.4 – 0.75 = 0.65
अतः हिन्दी परीक्षा में उत्तीर्ण होने की प्रायिकता = 0.65.

UP Board Solutions

प्रश्न 21.
एक कक्षा के 60 विद्यार्थियों में से 30 ने एन.सी.सी. (NCC), 32 ने एन.एस.एस. (NSS) और 24 ने दोनों को चुना है। यदि इनमें से एक विद्यार्थी यादृच्छया चुना गया है तो प्रायिकता ज्ञात कीजिए कि
(i) विद्यार्थी ने एन.सी.सी. या एन.एस.एस. को चुना है।
(ii) विद्यार्थी ने न तो एन.सी.सी. और न ही एन.एस.एस. को चुना है।
(iii) विद्यार्थी ने एन.एस.एस. को चुना है किन्तु एन.सी.सी को नहीं चुना है।
हल:
माना A और B क्रमशः एन.सी.सी. और एन.एस.एस. चुनने की घटना को दर्शाते हैं।
विद्यार्थियों की कुल संख्या = 60
एन.सी.सी. चुनने वाले विद्यार्थियों की संख्या = 30
एन.सी.सी. चुनने की प्रायिकता P(A) = (UPBoardSolutions.com) [latex s=2]\frac { 30 }{ 60 }[/latex] = [latex s=2]\frac { 1 }{ 2 }[/latex]
एन.एस.एस. चुनने वाले विद्यार्थियों की संख्या = 32
एन.एस.ए. चुने जाने की प्रायिकता P(B) = [latex s=2]\frac { 32 }{ 60 }[/latex]
एन.सी.सी. और एन.एस.एस. चुनने वालों की संख्या = 24
एन.सी.सी. और एन.एस.एस. चुनने की प्रायिकता = [latex s=2]\frac { 24 }{ 60 }[/latex]
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 21

अध्याय 16 पर विविध प्रश्नावली

प्रश्न 1.
एक डिब्बे में 10 लाले, 20 नीली व 30 हरी गोलियाँ रखी हैं। डिब्बे से 5 गोलियाँ यादृच्छया निकाली जाती हैं। प्रायिकता क्या है कि
(i) सभी गोलियाँ नीली हैं?
(ii) कम से कम एक गोली हरी है ?
हल:
एक डिब्बे में 10 लाल, 20 नीली तथा 30 हरी कुल 60 गोलियाँ हैं।
UP Board Solutions for Class 11 Maths Chapter 16 Probability 1
UP Board Solutions for Class 11 Maths Chapter 16 Probability 1.1

UP Board Solutions

प्रश्न 2.
ताश के 52 पत्तों की एक अच्छी तरह फेंटी गई गड्डी से 4 पत्ते निकाले जाते हैं। इस बात की क्या प्रायिकता है कि निकाले गए पत्तों में 3 ईंट और एक हुकुम का पत्ता है ?
UP Board Solutions for Class 11 Maths Chapter 16 Probability 2

प्रश्न 3.
एक पासे के दो फलकों में से प्रत्येक पर संख्या 1 अंकित है। तीन फलकों में प्रत्येक पर संख्या 2 अंकित है और एक फलक पर संख्या 3 अंकित है। यदि पासा एक बार फेंका जाता है, तो निम्नलिखित ज्ञात कीजिए (i) P(2)
(ii) P(1 या 3)
(ii) P(3 – नहीं)
हल:
पासे पर कुल संभावित परिणाम = 6
(i) 2 अंक 3 फलकों पर अंकित है।
2 प्राप्त करने के 3 तरीके हैं
UP Board Solutions for Class 11 Maths Chapter 16 Probability 3

UP Board Solutions

प्रश्न 4.
एक लाटरी में 10000 टिकट बेचे गए जिनमें दस समान इनाम दिए जाने हैं। कोई भी इनाम न मिलने की प्रायिकता क्या है यदि आप
(a) एक टिकटं खरीदते हैं
(b) दो टिकट खरीदते हैं
(c) 10 टिकट खरीदते हैं ?
हल:
टिकटों की संख्या जिन पर इनाम नहीं है = 10000 – 10 = 9990
कुल टिकटों की संख्या = 10000
UP Board Solutions for Class 11 Maths Chapter 16 Probability 4
UP Board Solutions for Class 11 Maths Chapter 16 Probability 4.1

UP Board Solutions

प्रश्न 5.
100 विद्यार्थियों में से 40 और 60 विद्यार्थियों के दो वर्ग बनाए गए हैं। यदि आप और आपका एक मित्र 100 विद्यार्थियों में हैं तो प्रायिकता क्या है कि
(a) आप दोनों एक ही वर्ग में हों।
(b) आप दोनों अलग-अलग वर्गों में हों।
हल:
माना दो वर्ग A और B हैं जिनमें क्रमशः 40 और 60 विद्यार्थी हैं।
(i) मान लीजिए दोनों विद्यार्थी वर्ग (UPBoardSolutions.com) A में आते हैं।
98 विद्यार्थियों में से 38 विद्यार्थी चुने जाते हैं।
UP Board Solutions for Class 11 Maths Chapter 16 Probability 5
UP Board Solutions for Class 11 Maths Chapter 16 Probability 5.1

प्रश्न 6.
तीन व्यक्तियों के लिए तीन पत्र लिखवाए गए हैं और प्रत्येक के लिए पता लिखा एक लिफाफा है। पत्रों को लिफाफों में यादृच्छया इस प्रकार डाला गया कि प्रत्येक लिफाफे में एक ही पत्र है। प्रायिकता ज्ञात कीजिए कि कम से कम एक पत्र अपने सही लिफाफे में डाला गया है।
हल:
मान लीजिए लिफाफों को A, B, C और संगत पत्रों को क्रमशः a, b, c से निरूपित किया गया है।
(i) एक पत्र उसके संगत लिफाफे में और दूसरे दो गलत लिफाफे में रखने के तरीके
(Aa, Bc, Cb), (Ac, Bb, Ca), (Ab, Ba, Cc)
(ii) यदि दो पत्र संगत (ठीक) लिफाफों में रखे गए हैं तो तीसरा भी संगत (ठीक) लिफाफे में होगा।
(iii) तीनों पत्र उनकै संगत (ठीक) लिफाफों में रखे जाए (Aa, Bb, Cc) एक तरीका है।
पत्र कम से कम एक संगत लिफाफे में रखे जाने के तरीके 3 + 1 = 4
तीन पत्रों को तीन लिफाफा में रखने के कुल तरीके = 3! = 6
कम से कम एक एत्र संगत लिफाफे में रखे जाने की प्रायिकता = [latex s=2]\frac { 4 }{ 6 }[/latex] = [latex s=2]\frac { 2 }{ 3 }[/latex]

UP Board Solutions

प्रश्न 7.
A और B दो घटनाएँ इस प्रकार हैं कि P(A) = 0.54, P(B) = 0.69 और P(A ∩ B) = 0.35, ज्ञात कीजिए:
(i) P(A ∪B)
(ii) P(A’ ∩ B’)
(iii) P(A ∩ B’)
(iv) P(B ∩ A’)
हल:
P(A) = 0.54, P(B) = 0.69, P(A ∩ B) = 0.35
(i) P(A ∪ B) = P(A) + P(B) – P(A ∩ B) = 0.54 + 0.69 – 0.35 = 0.88
(ii) P(A’ ∩ B’) = P[(A ∪ B)’] = 1 – P(A ∪ B) = 1 – 0.88 = 0.12.
(iii) P(A ∩ B’) = P(A) – P(A ∩ B) = 0.54- 0.35 = 0.19.
(iv) P(B ∩ A’) = P(B) – P(B ∩ A) = 0.69 (UPBoardSolutions.com) – 0.35 = 0.34.

प्रश्न 8.
एक संस्था के कर्मचारियों में से 5 कर्मचारियों का चयन प्रबन्ध समिति के लिए किया गया है। पाँच कर्मचारियों का ब्यौरा निम्नलिखित है:
UP Board Solutions for Class 11 Maths Chapter 16 Probability 8
इस समूह से प्रवक्ता पद के लिए यादृच्छया एक व्यक्ति का चयन किया गया। प्रवक्ता के पुरुष या 35 वर्ष से अधिक आयु का होने की प्रायिकता क्या है ?
हल:
माना A पुरुष के चयन और B व्यक्ति की आयु 35 वर्ष से अधिक को दर्शाते हैं।
पुरुषों की कुल संख्या = 3
35 वर्ष से अधिक आयु के कुल लोग = 2
35 वर्ष से अधिक आयु का पुरुष 1 है।
UP Board Solutions for Class 11 Maths Chapter 16 Probability 8.1

UP Board Solutions

प्रश्न 9.
यदि 0, 1, 3, 5 और 7 अंकों द्वारा 5000 से बड़ी चार अंकों की संख्या का यादृच्छया निर्माण किया गया हो तो पाँच से भाज्य संख्या के निर्माण की क्या प्रायिकता है जब:
(i) अंकों की पुनरावृत्ति नहीं की जाए ?
(ii) अंकों की पुनरावृत्ति की जाए ?
हल:
(i) जब अंकों की पुनरावृत्ति नहीं होती।
मान लीजिए अंकों के स्थानों को I, II, III, IV से निरूपित किया गया हैं।
5000 से बड़ी संख्या बनाने के लिए स्थान I पर 5 या 7 रखना होगा अर्थात स्थान I को भरने के तरीके = 2
अब 5 अंक शेष रह जाते हैं।
स्थान II, III और IV को 4, 3 व 2 तरीकों से भर सकते हैं।
5000 से बड़ी संख्याएँ = 4 x 3 x 2 = 24 = n(S)
5 से भाज्य संख्याएँ वे हैं जब इकाई (स्थान IV) (UPBoardSolutions.com) पर 0 या 5 हो। 5 को स्थान I पर तथा 0 को स्थान IV पर रखने के बाद 3 अंक बचते हैं। स्थान II और III, को 2 x 3 = 6 तरीकों से भरा जा सकता है।
इस प्रकार स्थान I पर जब 5 हो और IV पर 0 हो तो 6 संख्याएँ बनती हैं।
जब स्थान I पर 7 और स्थान IV पर 5 हो तो भी 6 संख्याएँ बनेंगी।
5000 से बड़ी और 5 से भाज्य संख्याएँ। = 6 + 6 + 6 = 18
अतः 5000 से बड़ी और 5 से भाज्य संख्याओं के बनने की प्रायिकता = [latex s=2]\frac { 18 }{ 24 }[/latex] = [latex s=2]\frac { 3 }{ 4 }[/latex]

(ii) जब पुनरावृत्ति की जा सकती है। स्थान I पर 5 या 7 रख सकते है जिससे संख्या 5000 से बड़ी बन सके।
स्थान I को 2 तरीकों से भर सकते हैं।
क्योंकि पुनरावृत्ति की अनुमति है तो प्रत्येक स्थान II, III, IV को 5 तरीकों से भर सकते हैं।
चारों स्थानों को भरने के तरीके या 5000 से बड़ी संख्याएँ = 2 x 5 x 5 x 5 = 250 = n(S)
संख्या यदि 5 से भाज्य है तो इकाई (IV) स्थान पुर 0 या 5 रखना होगा।
इसलिए इकाई के स्थान को 2 तरीकों से भर सकेंते हैं।
बीच के स्थान II और III को 5 x 5 तरीकों से भर सकते हैं।
इस प्रकार 5000 से बड़ी और 5 से भाज्य संख्याएँ = 2 x 5 x 5 x 2 = 100
5000 से बड़ी और 5 से भाज्य बनाने वाली संख्याओं की प्रायिकता = [latex s=2]\frac { 100 }{ 250 }[/latex] = [latex s=2]\frac { 2 }{ 5 }[/latex]

UP Board Solutions

प्रश्न 10.
किसी अटैची के ताले में चार चक्र लगे हैं। जिनमें प्रत्येक पर 0 से 9 तक 10 अंक अंकित हैं। ताला चार अंकों के एक विशेष क्रम (अंकों की पुनरावृत्ति नहीं) द्वारा ही खुलता है। इस बात की क्या प्रायिकता है कि कोई व्यक्ति अटैची खोलने के लिए सही क्रम का पता लगा ले।
हल:
प्रथम स्थान पर कोई अंक 10 तरीकों से ही लाया जा सकता है। यहाँ 0, 1, 2, …. 9 में से कोई भी अंक हो सकता है।
दूसरे, तीसरे व चौथे स्थान को 9 x 8 x 7 तरीकों से भरा जा सकता है।
इस प्रकार चार अंकों की संख्या (जबकि पुनरावृत्ति (UPBoardSolutions.com) नहीं की गई है) बनने के तरीके = 10 x 9 x 8 x 7 = 5040
ताले को खोलने के लिए सही संख्या केवल एक ही है।
अटैची को खोलने का सही क्रम ज्ञात करने की प्रायिकता = [latex s=2]\frac { 1 }{ 5040 }[/latex]

We hope the UP Board Solutions for Class 11 Maths Chapter 16 Probability (प्रायिकता) help you. If you have any query regarding UP Board Solutions for Class 11 Maths Chapter 16 Probability (प्रायिकता), drop a comment below and we will get back to you at the earliest.

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series (अनुक्रम तथा श्रेणी)

These Solutions are part of UP Board Solutions for Class 11 Maths. Here we have given UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series (अनुक्रम तथा श्रेणी).

प्रश्नावली 9.1

प्रश्न 1 से 6 तक के अनुक्रमों में प्रत्येक के प्रथम पाँच पद लिखिए, जिनका नाव पद दिया गया है।

प्रश्न 1.
an = n(n + 2).
हल:
an = n(n + 2)
n का मान 1, 2, 3, 4, 5 रखने पर
a1 = 1 x 3 = 3,
a2 = 2 x 4 = 8,
a3 = 3 x 5 = 15,
a4 = 4 x 6 = 24,
a5 = 5 x 7 = 35
अतः दिए गए अनुक्रम के पाँच पद 3, 8, 15, 24, 35 हैं।

UP Board Solutions

प्रश्न 2.
an = [latex]\frac { n }{ n + 1 }[/latex]
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 2

प्रश्न 3.
an = 2n
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 3

प्रश्न 4.
an = [latex]\frac { 2n – 3 }{ 6 }[/latex]
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 4

UP Board Solutions

प्रश्न 5.
an = (-1)n-1 5n+1.
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 5

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 6

निम्नलिखित प्रश्न 7 से 10 तक के अनुक्रमों में प्रत्येक का वांछित पद ज्ञात कीजिए, जिनका शव पद दिया गया है:

UP Board Solutions

प्रश्न 7.
an = 4n -3, a17, a24
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 7
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 7.1

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 8

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 9

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 10

UP Board Solutions

प्रश्न 11 से 13 तक प्रत्येक अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए:

प्रश्न 11.
a1 = 3, an = 3an-1 + 2 सभी n > 1 के लिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 11

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 12

UP Board Solutions

प्रश्न 13.
a1 = a2 = 2, an = an-1 – 1, जहाँ n > 2.
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 13

प्रश्न 14.
Fibonacci अनुक्रम निम्नलिखित रूप में परिभाषित है :
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 14
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 14.1

UP Board Solutions

प्रश्नावली 9.2

प्रश्न 1.
1 से 2001 तक के विषम पूर्णाकों का योग ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 1

प्रश्न 2.
100 तथा 1000 के मध्य उन सभी प्राकृत संख्याओं का योगफल ज्ञात कीजिए जो 5 के गुणज हों।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 2
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 2.1

UP Board Solutions

प्रश्न 3.
किसी समांतर श्रेणी में प्रथम पद 2 है तथा प्रथम पांच पदों का भागफल, अगले पांच पदों के योगफल का एक चौथाई है। दर्शाइए कि 20वाँ पद -112 है।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 3

UP Board Solutions

प्रश्न 4.
समांतर श्रेढी – 6, [latex]\frac { -11 }{ 2 }[/latex] , 5 …… के कितने पदों का योगफल – 25 है?
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 4
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 4.1

UP Board Solutions

प्रश्न 5.
किसी समांतर श्रेढ़ी का p वाँ पद [latex]\frac { 1 }{ q }[/latex] तथा p वा पद [latex]\frac { 1 }{ p }[/latex] हो, तो सिद्ध कीजिए कि प्रथम pq पदों का योग [latex]\frac { 1 }{ 2 }[/latex] (pq + 1) होगा, जहाँ p ≠ q.
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 5
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 5.1

प्रश्न 6.
यदि किसी समांतर श्रेणी 25, 22, 19, ……. के कुछ पदों का योगफल 116 है तो अंतिम पद ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 6
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 6.1

UP Board Solutions

प्रश्न 7.
उस समांतर श्रेणी के n पदों को योगफल ज्ञात कीजिए जिसका वाँ पद 5k + 1 हैं।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 7

UP Board Solutions

प्रश्न 8.
यदि किसी समांतर श्रेणी के n पदों का योगफले pn + qn² है, जहाँ p तथा q अचर हों तो सार्वअंतर ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 8

UP Board Solutions

प्रश्न 9.
दो समांतर श्रेणियों के n पदों के योगफल का अनुपात 5n + 4 : 9n + 6 हो, तो उनके 18 वें पदों का अनुपात ज्ञात करो।
हल:
मान लीजिए समातर श्रेणियों के प्रथम पद a1, a2, तथा सार्वअंतर d1 और d2 हैं। यदि Sn, S’n उनके संगत योगफल हैं। T18 और T’18 उनके संगत 18वें पद हैं।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 9
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 9.1

UP Board Solutions

प्रश्न 10.
यदि किसी समांतर श्रेणी के प्रथम p पदों का योग, प्रथम q पदों के योगफल के बराबर हो, तो प्रथम (p + q) पदों का योगफल ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 10
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 10.1

प्रश्न 11.
यदि किसी समांतर श्रेणी के प्रथम p, q, r पदों का योगफल क्रमशः a, b, c, हो तो सिद्ध कीजिए कि:
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 11
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 11.1

UP Board Solutions

प्रश्न 12.
किसी समांतर श्रेणी के m तथा n पदों के योगफलों का अनुपात m² : n² है तो दर्शाइए कि वे m तथा n वें पदों का अनुपात (2m – 1) : (2n -1) है।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 12

UP Board Solutions

प्रश्न 13.
यदि किसी समांतर श्रेणी के पदों का योगफल 3n² + 5n है तथा इसका m वाँ पद 164 है तो m का मान ज्ञात करो।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 13

प्रश्न 14.
8 और 26 के बीच ऐसी 5 संख्याएँ डालिए ताकि प्राप्त अनुक्रम एक समांतर श्रेणी बन जाए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 14

UP Board Solutions

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 15
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 15.1

प्रश्न 16.
m संख्याओं को 1 तथा 31 के बीच रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी है। और 7 वीं एवं (m – 1) वीं संख्याओं का अनुपात 5 : 9 है, तो m का मान ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 16
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 16.1

UP Board Solutions

प्रश्न 17.
एक व्यक्ति ऋण का भुगतान 100 रुपए की प्रथम किश्त से शुरू करता है। यदि वह प्रत्येक किश्त में 5 रुपए प्रति माह बढ़ाता है, तो 30 वीं किश्त की राशि क्या होगी?
हुल:
पहली किश्त a = 100 रु.
हर माह किश्त में बढ़ोत्तरी = सार्व अंतर = 5 रु.
30वीं किश्त = समांतर श्रेणी का 30वाँ पद = a + (n – 1)d
= 100 + (30 – 1) 5 = 100 + 29 x 5 = 100 + 145 = 245 रु.

प्रश्न 18.
एक बहुभुज के दो क्रमिक अंतः कोणों का अंतर 5° है। यदि सबसे छोटा कोण 120° हो, तो बहुभुज की भुजाओं की संख्या ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 18
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 18.1

UP Board Solutions

प्रश्नावली 9.3

प्रश्न 1.
गुणोत्तर श्रेणी [latex]\frac { 5 }{ 2 }[/latex] , [latex]\frac { 5 }{ 4 }[/latex] , [latex]\frac { 5 }{ 8 }[/latex] ……. का 20 वाँ तथा n वाँ पद ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 1

प्रश्न 2.
उस गुणोत्तर श्रेणी का 12 वाँ पद ज्ञात कीजिए, जिसका 8वाँ पद 192 तथा सार्व अनुपात 2 है।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 2

प्रश्न 3.
किसी गुणोत्तर श्रेणी का 5 वाँ, 8 वाँ तथा 11 वाँ पदक्रमशः p, q तथा s हैं, तो दिखाइए कि q² = ps.
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 3

प्रश्न 4.
किसी गुणोत्तर श्रेणी का चौथा पद उसके दूसरे पद का वर्ग है तथा प्रथम पद -3 है, तो 7वाँ पद ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 4

प्रश्न 5.
अनुक्रमों को कौन सा पद:
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 5
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 5.1
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 5.2

UP Board Solutions

प्रश्न 6.
x के किस मान के लिए संख्याएँ [latex]\frac { -2 }{ 7 }[/latex], x , [latex]\frac { -7 }{ 2 }[/latex] गुणोत्तर श्रेणी में हैं?
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 6

प्रश्न 7 से 10 तक प्रत्येक गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

प्रश्न 7.
0.15, 0.015, 0.0015, ….. 20 पदों तक।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 7

UP Board Solutions

प्रश्न 8.
√7, √21, 3√7, …. n पदों तक।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 8

प्रश्न 9.
1, -a, -a2, -a3 …. n पदों तक (यदि a ≠ -1).
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 9

प्रश्न 10.
x3 , x5, x7 … n पदों तक (यदि x ≠ ±1).
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 10

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 11

UP Board Solutions

प्रश्न 12.
एक गुणोत्तर श्रेणी के तीन पदों का योगफल [latex]\frac { 39 }{ 10 }[/latex] है तथा उनका गुणनफल 1 है। सार्व अनुपात तथा पदों को ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 12

प्रश्न 13.
मुणोत्तर श्रेणी 3, 32, 33, …… के कितने पद आवश्यक हैं ताकि उनका योगफल 120 हो जाए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 13
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 13.1

प्रश्न 14.
किसी गुणोत्तर श्रेणी के प्रथम तीन पदों का योगफल 16 है तथा अगले 3 पदों का योग 128 है तो गुणोत्तर श्रेणी का प्रथम पद, सार्व अनुपात तथा n पदों का योगफल ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 14
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 14.1

UP Board Solutions

प्रश्न 15.
एक गुणोत्तर श्रेणी का प्रथम पद a = 729 तथा 7वाँ पद 64 है, तो S7 ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 15

प्रश्न 16.
एक गुणोत्तर श्रेणी को ज्ञात कीजिए, जिसके प्रथम दो पदों का योगफल -4 है तथा 5वाँ पद तृतीय पद को 4 गुना है।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 17
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 16.1

UP Board Solutions

प्रश्न 17.
यदि किसी गुणोत्तर का 4 वाँ, 10 वाँ तथा 16 वाँ पद क्रमशः x, y तथा z हैं, तो सिद्ध कीजिए कि x, y, z गुणोत्तर श्रेणी में हैं।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 16

प्रश्न 18.
अनुक्रम 8, 88, 888, ……. के n पदों का योग ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 18

प्रश्न 19.
अनुक्रम 2, 4, 8, 16, 32, तथा 128, 32, 8, 2, [latex]\frac { 1 }{ 2 }[/latex] के संगत पेदीं के गुणनफल से बने अनुक्रम का योगफल ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 19

UP Board Solutions

प्रश्न 20.
दिखाइए कि अनुक्रम a, ar, ar2,….arn-1 तथा A, AR, AR2, … ARn-1 के संगत पदों के गुणनफल से बना अनुक्रमे गुणोत्तर श्रेणी होती है तथा सार्व अनुपात ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 20

प्रश्न 21.
ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेणी में हो, जिसका तीसरा पद प्रथम पद से 9 अधिक हो, तथा दूसरा पद चौथे पद से 18 अधिक हो।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 21
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 21.1

UP Board Solutions

प्रश्न 22.
यदि किसी गुणोत्तर श्रेणी का p वाँ, q वाँ तथा r वाँ पद क्रमशः a, b, तथा c हो, तो सिद्ध कीजिए कि aq-r . br-p – cp-q = 1.
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 22

प्रश्न 23.
यदि किसी गुणोत्तर श्रेणी का प्रथम तथा n वाँ पद a तथा b हैं, एवं P, n पदों का गुणनफल हो, तो सिद्ध कीजिए कि P2 = (ab)n.
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 23
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 23.1

प्रश्न 24.
दिखाइए कि एक गुणोत्तर श्रेणी के प्रथम n पदों का योगफल तथा (n + 1)वें पद से (2n) वें पद तक के पदों के योगफल का अनुपात [latex]\frac { 1 }{ { r }^{ n } }[/latex] हैं।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 24

UP Board Solutions

प्रश्न 25.
यदि a, b, c तथा d गुणोत्तर श्रेणी में हैं तो दिखाइए कि (a² + b² + c²) (b² + c² + d²) = (ab + bc + cd)².
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 25

प्रश्न 26.
ऐसी दो संख्याएँ ज्ञात कीजिए जिनको 3 और 81 के बीच रखने पर प्राप्त अनुक्रमः एक गुणोत्तर श्रेणी बन जाए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 26

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 27
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 27.1

UP Board Solutions

प्रश्न 28.
दो संख्याओं का योगफल उनके गुणोत्तर माध्य का 6 गुना है तो दिखाइए कि संख्याएँ (3 + 2√2) : (3 – 2√2) के अनुपात में हैं।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 28
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 28.1

UP Board Solutions

प्रश्न 29.
यदि A तथा G दो धनात्मक संख्याओं के बीच क्रमशः समांतर तथा गुणोत्तर माध्य हों, तो सिद्ध करो कि संख्याएँ A ≠ √{(A + G)(A – G)} हैं।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 29

UP Board Solutions

प्रश्न 30.
किसी कल्चर में बैक्टीरिया की संख्या प्रत्येक घण्टे के पश्चात् दुगुनी हो जाती है। यदि प्रारंभ में उसमें 30 बैक्टीरिया उपस्थित थे, तो बैक्टीरिया की संख्या दूसरे, चौथे तथा n वें घण्टों बाद क्या होगी ?
हल:
प्रारम्भ में बैक्टीरिया की संख्या a = 30
प्रत्येक घण्टे बाद बैक्टीरिया की संख्या दुगुनी हो जाती है।
सार्व अनुपात = 2
दूसरे घण्टे बाद बैक्टीरिया संख्या = ar2 = 30 x 22 = 120
चौथे घण्टे बाद बैक्टीरिया संख्या = ar4 = 30 x 24 = 480
n वें घण्टे बाद बैक्टीरिया संख्या = arn = 30 x 2n

प्रश्न 31.
500 रुपए धनराशि 10% वार्षिक चक्रवृद्धि ब्याज पर 10 वर्षों बाद क्या हो जाएगी, ज्ञात कीजिए ?
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 31
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 31.1

प्रश्न 32.
यदि किसी द्विघात समीकरण के मूलों के समांतर माध्य एवं गुणोत्तर माध्य क्रमशः 8 तथा 5 हैं, तो द्विधातीय समीकरण ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 32

प्रश्नावली 9.4

प्रश्न 1 से 7 तक प्रत्येक श्रेणी के n पदों का योग ज्ञात कीजिए:

प्रश्न 1.
1 x 2 + 2 x 3 + 3 x 4 + 4 x 5 +….
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 1

UP Board Solutions

प्रश्न 2.
1 x 2 x 3 + 2 x 3 x 4 + 3 x 4 x 5 + …….
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 2

प्रश्न 3.
3 x 1² + 5 x 2² + 7 x 3² + …….
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 3
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 3.1

UP Board Solutions

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 4

प्रश्न 5.
5² + 6² + 7² +… 20².
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 5
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 5.1

UP Board Solutions

प्रश्न 6.
3 x 8 + 6 x 11 + 9 x 14+…..
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 6

प्रश्न 7.
1² + (1² + 2²) + (1² + 2² + 3²) + ….
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 7
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 7.1

UP Board Solutions

प्रश्न 8 से 10 तक प्रत्येक श्रेणी के n पदों का योग ज्ञात कीजिए जिसका वाँ पद दिया है।

प्रश्न 8.
n (n + 1) (n + 4).
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 8

प्रश्न 9.
n² + 2n
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 9
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 9.1

प्रश्न 10.
(2n – 1)²
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 10

UP Board Solutions

अध्याय 9 पर विविध प्रश्नावली

प्रश्न 1.
दर्शाइए कि किसी समांतर श्रेढ़ी के (m + n) वें तथा (m – n) वें पदों का योग m वें पद को दुगुना है।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 1

प्रश्न 2.
यदि किसी समांतर श्रेढ़ी की तीन संख्याओं का योग 24 है तथा उनका गुणनफल 440 है तो संख्याएँ ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 2
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 2.1

प्रश्न 3.
माना कि किसी समांतर श्रेढ़ी के n, 2n तथा 3n पदों का योगफल क्रमशः S1, S2 तथा S3 हैं, तो दिखाइए कि S3 = 3(S2 – S1).
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 3

UP Board Solutions

प्रश्न 4.
200 और 400 के मध्य आने वाली ने सभी संख्याओं का योगफल ज्ञात कीजिए जो 7 से विभाजित है।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 4
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 4.1

प्रश्न 5.
1 से 100 तक आने वाले ने सभी पूर्णाकों का योगफल ज्ञात कीजिए जो 2 या 5 से विभाजित हों।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 5

UP Board Solutions

प्रश्न 6.
दो अंकों की उन सभी संख्याओं का योगफल ज्ञात कीजिए, जिनको 4 से विभाजित करने पर शेषफल 1 हो।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 6

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 7

प्रश्न 8.
गुणोचर श्रेढ़ी के कुछ पदों का योग 315 है, उसका प्रथम पद तथा सार्व अनुपात क्रमशः 5 और 2 हैं। अंतिम पद तथा पदों की संख्या ज्ञात करो।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 8

प्रश्न 9.
किसी गुणोत्तर श्रेढ़ी का प्रथम पद 1 है। तीसरे एवं पाँचवें पदों का योग 90 हो, तो गुणोत्तर श्रेढ़ी को सार्व अनुपात ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1

UP Board Solutions

प्रश्न 10.
किसी गुणोत्तर श्रेढ़ी के तीन पदों का योग 56 है। यदि हम क्रम से इन संख्याओं में से 1, 7, 21 घटाएँ तो हमें एक समांतर श्रेढी प्राप्त होती है। संख्याएँ ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 10
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 10.1
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 10.2

UP Board Solutions

प्रश्न 11.
किसी गुणोत्तर श्रेढ़ी के पदों की संख्या सम है। यदि उसके सभी पदों का योगफल, विषम स्थान पर रखे पदों के योगफल को 5 गुना है, तो सार्व अनुपात ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 11

प्रश्न 12.
एक समांतर श्रेढ़ी के प्रथम चार पदों का योगफल 56 है। अंतिम चार पदों का योगफल 112 है। यदि इसका प्रथम पद 11 है, तो पदों की संख्या ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 12
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 12.1

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 13

UP Board Solutions

प्रश्न 14.
किसी गुणोत्तर श्रेढ़ी में S, n पदों का योग, P उनका गुणनफल तथा R उनके व्युत्क्रमों का योग हो तो सिद्ध कीजिए कि PRn = Sn
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 14
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 14.1

प्रश्न 15.
किसी समांतर श्रेढ़ी का p वाँ, q वाँ, r वाँ पद क्रमशः a, b, c हैं, तो सिद्ध कीजिए : (q – r) a + (r – p) b + (p – q) c = 0.
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 15
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 15.1

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 16

UP Board Solutions

प्रश्न 17.
यदि a, b, c, d गुणोत्तर श्रेढ़ी में हैं, तो सिद्ध कीजिए कि (an + bn), (bn + cn), (cn + dn) गुणोत्तर श्रेढ़ी में हैं।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 17

प्रश्न 18.
यदि x² – 3x + p = 0 के मूल a तथा b हैं तथा? x² – 12x + q = 0 के मूल c तथा d हैं, जहाँ a, b, c, d गुणोत्तर श्रेढ़ी के रूप में हैं। सिद्ध कीजिए कि (q + p) : (q – p) = 17 : 15.
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 18
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 18.1

UP Board Solutions

प्रश्न 19.
दो धनात्मक संख्याओं a और 6 के बीच समांतर माध्य तथा गुणोत्तर मध्य का अनुफ्त m : n है। दर्शाइए कि
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 19
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 19.1

प्रश्न 20.
यदि a, b, c समांतर श्रेढ़ी में हैं; b, c, d गुणोत्तर श्रेढ़ी में हैं तथा [latex]\frac { 1 }{ c }[/latex] , [latex]\frac { 1 }{ d }[/latex] , [latex]\frac { 1 }{ e }[/latex] समांतर श्रेढ़ी में हैं, तो सिद्ध कीजिए कि a, c, e गुणोत्तर श्रेढ़ी में हैं।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 20

प्रश्न 21.
निम्नलिखित श्रेढ़ियों के n पदों का योग ज्ञात कीजिए:
(i) 5 + 55 + 555 + ……
(ii) 0.6 + 0.66 + 0.666 + …..
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 21
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 21.1

UP Board Solutions

प्रश्न 22.
श्रेढ़ी का 20वाँ पद ज्ञात कीजिए : 2 x 4 + 4 x 6 + 6 x 8 + ….. + n पदों तक
हल:
2, 4, 6, ….. का 20 वाँ पद = 2n = 2 x 20 = 40
4, 6, 8…… का 20 वाँ पद = 4 + 19 x 2 = 4 + 38 = 42
2 x 4 + 4 x 6 + 6 x 8 +…… का 20 वाँ पद = 40 x 42 = 1680.

प्रश्न 23.
श्रेणी 3 + 7 + 13 + 21 + 31 + ….. के n पदों का योगफल ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 23
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 23.1

UP Board Solutions

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 24
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 24.1

प्रश्न 25.
निम्नलिखित श्रेणियों के n पदों का योग ज्ञात कीजिए:
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 25
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 25.1

UP Board Solutions

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 26
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 26.1

प्रश्न 27.
कोई किसान एक पुराने ट्रैक्टर को 12000 रु. में खरीदता है। वह 6000 रू. नकद भुगतान करता है। और शेष राशि को 500 रू की वार्षिक किस्त के अतिरिक्त उस धन पर जिसका भुगतान न किया गया हो 12% वार्षिक ब्याज भी देता है। किसान को ट्रैक्टर की कुल कितनी कीमत देनी पड़ेगी?
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 27
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 27.1
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 27.2

UP Board Solutions

प्रश्न 28.
शमशाद अली 22000 रू में एक स्कूटर खरीदता है। वह 4000 रू नकद देता है और शेष राशि को 1000 रू वार्षिक किस्त के अतिरिक्त उस धन पर जिसका भुगतान न किया गया हो 10% वार्षिक ब्याज भी देता है। उसे स्कूटर के लिए कुल कितनी राशि चुकानी पड़ेगी?
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 28
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 28.1

प्रश्न 29.
एक व्यक्ति अपने चार मित्रों को पत्र लिखता है। वह प्रत्येक को उसकी नकल करके चार दूसरे व्यक्तियों को भेजने का निर्देश देता है, तथा जिनसे यह भी करने को कहता है कि प्रत्येक पत्र प्राप्त करने वाला व्यक्ति इस श्रृंखला को जारी रखे। यह कल्पना करके कि श्रृंखला न टूटे तो 8वें पत्रों के समूह भेजे जाने तक कितना डाक खर्च होगा जबकि एक पत्र का डाक खर्च 50 पैसे है।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 29

UP Board Solutions

प्रश्न 30.
एक आदमी ने एक बैंक में 10000 रूपये 5% वार्षिक साधारण ब्याज पर जमा किया। जब से रकम बैंक में जमा की गई तब से, 15वें वर्ष में उसके खाते में कितनी रकम हो गई तथा 20 वर्षों बाद कुल कितनी रकम हो गयी, ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 30

प्रश्न 31.
एक निर्माता घोषित करता है कि उसे की मशीन जिसका मूल्य 15625 रूपये है, हर वर्ष 20% की दर से उसका अवमूल्यन होता है। 5 वर्ष के बाद मशीन का अनुमानित मूल्य ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 31

UP Board Solutions

प्रश्न 32.
किसी कार्य को कुछ दिनों में पूरा करने के लिए 150 कर्मचारी लगाए गए। दूसरे दिन 4 कर्मचारियों ने काम छोड़ दिया, तीसरे दिन चार और कर्मचारियों ने काम छोड़ दिया तथा इस प्रकार अन्य। अब कार्य पूरा करने में 8 दिन अधिक लगते हैं, तो दिनों की संख्या ज्ञात कीजिए, जिनमें कार्य पूरा किया गया।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 32
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 32.1

We hope the UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series (अनुक्रम तथा श्रेणी) help you. If you have any query regarding UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series (अनुक्रम तथा श्रेणी), drop a comment below and we will get back to you at the earliest.

UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions

UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions (सम्बन्ध एवं फलन) are part of UP Board Solutions for Class 12 Maths. Here we have given UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions (सम्बन्ध एवं फलन)

Board UP Board
Textbook NCERT
Class Class 12
Subject Maths
Chapter Chapter 1
Chapter Name Relations and Functions
Exercise Ex 1.1, Ex 1.2, Ex 1.3, Ex 1.4,
Number of Questions Solved 55
Category UP Board Solutions

UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions

Chapter 1 Relations and Functions Ex 1.1

We have to find the L.C.M of 12,18 and 24. Now,. Write the given number in their form of multiple.

प्रश्न 1.
निर्धारित कीजिए कि क्या निम्नलिखित सम्बन्धों में से प्रत्येक स्वतुल्य, सममित तथा संक्रामक हैं
(i) से (iv) व उनके हल के लिए प्रश्नावली 1 (A) का प्रश्न 1 देखें।
(v) किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित सम्बन्ध R
(a) R = { (x, y) : x तथा y एक ही स्थान पर कार्य करते हैं }
(b) R = { (x, y) : x तथा y एक ही मोहल्ले में रहते हैं }
(c) R = { (x, y) : x, y से ठीक-ठीक 7 सेमी लम्बा है }
(d) R = { (x, y) : x, y की पत्नी है}
(e) R = { (x, y) : x, y के पिता हैं }
हल :
(v) माना A = किसी विशेष समय पर किसी नगर के निवासियों का समुच्चय
(a)
R = { (x, y) : x तथा y एक ही स्थान पर कार्य करते हैं }
R स्वतुल्य है, क्योंकि प्रत्येक व्यक्ति उस नगर में उस विशेष समय पर कार्यरत है। R सममित है, क्योंकि x , y एक ही स्थान पर एक समय पर कार्यरत हैं तो y, x भी उसी स्थान पर उस समय कार्यरत हैं। R संक्रामक है, क्योंकि x, y तथा y, z एक नगर में एक ही समय पर कार्यरत हैं तो उस नगर में उसी समय x, z भी कार्यरत हैं।
अतः
स्पष्ट है कि R स्वतुल्य, सममित तथा संक्रामक है।

(b)
R = { (x , y) : x तथा y एक ही मोहल्ले में रहते हैं }
R स्वतुल्य है, क्योंकि उस स्थान का प्रत्येक व्यक्ति वहीं पर रहता है। R सममित है, क्योकि x और y एक स्थान पर रहते हैं तथा उसी स्थान पर y और x भी रहते हैं। R संक्रामक है, क्योंकि x , y तथा y, z एक स्थान पर रहते हैं तब x , z भी उसी स्थान पर रहते हैं।
अतः
स्पष्ट है कि R स्वतुल्य, सममित तथा संक्रामक है।

(c)
R = { (x,  y) : x, y से ठीक-ठीक 7 सेमी लम्बा है।
R स्वतुल्य नहीं है, क्योंकि कोई भी व्यक्ति अपने आप से 7 सेमी अधिक लम्बा नहीं हो सकता। R सममित नहीं है, क्योंकि  y, x से ठीक 7 सेमी अधिक लम्बा है तब  x, y से  7 सेमी लम्बा नहीं हो सकता। R संक्रामक नहीं है, क्योंकि  x, y से तथा  y, z से ठीक 7 सेमी लम्बे तो  x, y से ठीक 7 सेमी अधिक लम्बा नहीं हो सकता।
अतः
स्पष्ट है कि R स्वतुल्य, सममित तथा संक्रामक में से कोई भी नहीं है।

(d)
R = { (x,  y) : x, y की पत्नी है}
R स्वतुल्य नहीं है, क्योंकि x स्वयं अपनी ही पत्नी नहीं हो सकती है। R सममित नहीं है, क्योंकि यदि  x, y की पत्नी है तो  y, x की पत्नी नहीं हो सकती। R संक्रामक नहीं है, क्योंकि यदि  x, y की पत्नी है तो  y किसी की भी पत्नी नहीं हो सकती।
अतः
स्पष्ट है कि R स्वतुल्य, सममित तथा संक्रामक नहीं है।

(e)
R = { (x, y) : x, y के पिता हैं}
R स्वतुल्य नहीं है, क्योंकि x अपना ही पिता नहीं हो सकता। R सममित नहीं है, क्योंकि यदि  x, y का पिता है तो  y, x का पिता नहीं हो सकता। R संक्रामक नहीं है, क्योंकि x, y का y, z का पिता है तो x,  z का पिता नहीं हो सकता।
अतः
स्पष्ट है कि R स्वतुल्य, सममित तथा संक्रामक नहीं है।

UP Board Solutions

The LCM of 12 and 16 is 48.

प्रश्न 2.
सिद्ध कीजिए कि वास्तविक संख्याओं के समुच्चय R में R = { (a, b) : a ≤ b2}, द्वारा परिभाषित सम्बन्ध R, न तो स्वतुल्य है, न सममित है और न ही संक्रामक है।
हल :
माना A = वास्तविक संख्याओं का समुच्चय है और R = { (a, b) : a ≤ b2}

  1. R स्वतुल्य नहीं है, क्योंकि ,[latex s=2]\frac { 1 }{ 2 } [/latex], [latex s=2]\frac { 1 }{ 4 } [/latex] से कम नहीं है।
  2. R सममित नहीं है, क्योंकि a ≤ b2 तो b, a2 से कम या बराबर नहीं है, जैसे -2 < 52 परन्तु  5, 22 से कम नहीं है।
  3. R संक्रामक नहीं है, माना a = 2, b = -2 और c = -1 तब 2 < (-2)2, -2 < (-1)2 परन्तु  2, (-1)2 से कम नहीं है।

अत:
1,2 तथा 3 से स्पष्ट है कि R स्वतुल्य, सममित तथा संक्रामक नहीं है।

प्रश्न 3.
जाँच कीजिए कि क्या समुच्चय{ 1, 2, 3, 4, 5, 6 } में R = { (a, b) : b = a + 1} द्वारा परिभाषित सम्बन्ध R स्वतुल्य, सममित या संक्रामक है।
हल :
दिया है, A = {1, 2, 3, 4, 5, 6} तथा R = { a, b ) : b = a + 1}

  1. R स्वतुल्य नहीं है, क्योंकि  a, a + 1 के बराबर नहीं हो सकता।
    माना 4 = 1, 1, (1 + 1) = 2 के बराबर नहीं हो सकता।
  2. R सममित नहीं है, क्योंकि b = a + 1
    तब a ≠ b + 1 यदि b = 1 + 1 = 2, 1 ≠ 2 + 1
  3. R संक्रामक नहीं है, क्योंकि b = a + 1, c = b + 1
    तो c ≠ a + 1 यदि b = 1 + 1 = 2 तथा c = 2 + 1 = 3 तो 3 ≠ 1 + 1

अत:
1, 2 तथा 3 से स्पष्ट है कि R स्वतुल्य, सममित तथा संक्रामक नहीं है।

प्रश्न 4.
सिद्ध कीजिए कि R में R = { (a, b) : a ≤ b}, द्वारा परिभाषित सम्बन्ध R स्वतुल्य तथा संक्रामक है किन्तु सममित नहीं है।
हल :
माना R कोई वास्तविक संख्याओं का समुच्चय है तथा R = { (a, b):a≤b}

  1. R स्वतुल्य है, क्योंकि a ≤ a ⇒ a = a
  2. R सममित नहीं है, क्योंकि a, b से कम है तब b, a से कम नहीं है।
    यदि 1, 2 से कम है तब 2, 1 से कम नहीं हो सकती।
  3. R संक्रामक है, क्योंकि  a ≤ b और b ≤ c तब a ≤ b

अत:
1, 2 व 3 से स्पष्ट है कि R स्वतुल्य और संक्रामक है परन्तु सममित नहीं है।

UP Board Solutions

प्रश्न 5.
वास्तविक संख्याओं के समुच्चय 5 में सम्बन्ध R, R = {(a, b): <b} द्वारा परिभाषित है, तो इसकी स्वतुल्यता, सममितता और संक्रमकता की जाँच कीजिए।
हल :
स्वतुल्यता :
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 1
प्रश्न 6.
सिद्ध कीजिए कि समुच्चय {1,2,3} में R = { (1,2), (2,1) } द्वारा प्रदत्त सम्बन्ध R सममित है किन्तु न तो स्वतुल्य है और न संक्रामक है।
हल :
दिया है, A = {1, 2, 3} तथा R = { (1, 2), (2, 1) }

  1. R स्वतुल्य नहीं है, क्योंकि (1, 1), (2, 2), (3, 3) ∉ R
  2. R सममित है, क्योंकि (1, 2) ∈ R और (2, 1) ∈ R
  3. R संक्रामक नहीं है, क्योंकि R में केवल 2 ही अवयव हैं, जबकि संक्रामक होने के लिए तीन अवयव का होना आवश्यक हैं।

अत:
1, 2 व 3 से स्पष्ट है कि R न तो स्वतुल्य है और न ही संक्रामक है परन्तु R सममित है। इति सिद्धम्

प्रश्न 7.
सिद्ध कीजिए कि किसी कॉलेज के पुस्तकालय की समस्त पुस्तकों के समुच्चय A में R = { (x, y) : x तथा y में पेजों की संख्या समान है } द्वारा प्रदत्त सम्बन्ध R एक तुल्यता सम्बन्ध
हल :
दिया है, A किसी कॉलेज के पुस्तकालय की समस्त पुस्तकों का समुच्चय है। तथा R = { (x, y) : x तथा y में पेजों की संख्या समान है }

  1. R स्वतुल्य है, क्योंकि बराबर पृष्ठों वाली प्रत्येक पुस्तक में पृष्ठों की संख्या बराबर होगी।
  2. R सममित है, क्योंकि x, y पुस्तकों में पृष्ठ बराबर है तो y, x पुस्तकों में भी पृष्ठ बराबर होगे।
  3. R संक्रामक है, क्योंकि x, y तथा y, z पुस्तकों में पृष्ठ बराबर हैं तो x, z पुस्तकों में भी पृष्ठ बराबर होंगे।

अत:
1, 2 व 3 से स्पष्ट है कि R स्वतुल्य, सममित तथा संक्रामक है। इसलिए R तुल्यता सम्बन्ध है।

UP Board Solutions

प्रश्न 8.
सिद्ध कीजिए कि A = {1, 2, 3, 4, 5} में, R = { (a, b) :|a – b| सम है } द्वारा प्रदत्त सम्बन्ध R एक तुल्यता सम्बन्ध है। प्रमाणित कीजिए कि {1, 3, 5} के सभी अवयव एक-दूसरे से सम्बन्धित हैं और समुच्चय {2, 4} के सभी अवयव एक-दूसरे से सम्बन्धित हैं परन्तु {1, 3 ,5} का कोई भी अवयव {2, 4} के किसी अवयव से सम्बन्धित नहीं है।
हल :
दिया है, A = {1, 2, 3, 4, 5} तथा R = { (a, b) : |a – b| एक सम संख्या } = { (1, 3), (1, 5), (2, 4), (3, 5)}
(a) तुल्यता सम्बन्ध सिद्ध करने के लिए प्रश्नावली 1 (A) के प्रश्न 10 का हल देखें।
(b) समुच्चय {1, 3, 5} में |1 -3|,|1 -5|,|3 -5| सभी सम संख्याएँ हैं। सभी अवयव एक-दूसरे से सम्बन्धित हैं। समुच्चय {2, 4} में |2 -4| एक सम संख्या है।
अतः
इसमें अवयव एक-दूसरे से सम्बन्धित हैं। परन्तु {1, 3, 5}, {2, 4} के अवयव आपस में सम्बन्धित नहीं हैं|1 -2|, |3 -4|,|3 -5|| सम संख्याएँ नहीं हैं। (इति सिद्धम्)

प्रश्न 9.
सिद्ध कीजिए कि समुच्चय A = { x ∈ z : 0 ≤ x ≤ 12 }, में दिए गए निम्नलिखित सम्बन्धों R में से प्रत्येक एक तुल्यता सम्बन्ध है :
(i) R = { (a, b) : |a – b|, 4 का एक गुणज है},
(ii) R = { (a, b) : a = b}, प्रत्येक दशा में 1 से सम्बन्धित अवयवों को ज्ञात कीजिए।
हल :
दिया है,  A = {x ∈ z : 0≤ x ≤ 12} = {0, 1, 2, 3, 4, ….., 12}
(i)
R = { (a, b) :|a – b|, 4 का एक गुणज है } ,
= { (1, 5), (1, 9), (2, 6), (2, 10), (3, 7), 3, 11),(4, 8) (4, 12), (5, 9), (6, 10), (7, 11), (8, 12),(0, 4), (0, 8), (0, 12), (0, 0), (1, 1), (2, 2), (3, 3), …, (12, 12)}

  1. R स्वतुल्य है, यदि a – b= 4k ⇒ k = 0
  2. R सममित है, यदि | a – b| =| b – a| = 4k
  3. R संक्रामक है, यदि a – b, 4 का गुणज है तथा b – c, 4 का गुणज है। तो a – b + b – c = |a – c| भी 4 का एक गुणज होगा।

अत:
1, 2 व 3 से स्पष्ट है कि R, स्वतुल्य, सममित तथा स्वतुल्य है।
अत:
R एक तुल्यता सम्बन्ध है।
1 से सम्बन्धित अवयव = {1, 5, 9}

(ii)
R = { (a, b) : a = b} ∴ R = { (0, 0), (1, 1), (2, 2), (3, 3),…. (12, 12) }

  1. 4 = 1 = (a, a) = R
    ∴R स्वतुल्य है।
  2. R सममित है, यदि 4 = b = b = d
  3. R संक्रामक है, यदि 1 = b,
    b = c ⇒ a = c अर्थात a, b, c तीनों बराबर हैं।

अत:
1, 2 तथा 3 से स्पष्ट है कि R स्वतुल्य, सममित तथा संक्रामक है।
अंतः
R एक तुल्यता सम्बन्ध है।
1 से सम्बन्धित अवयव = { 1 }

UP Board Solutions

प्रश्न 10.
ऐसे सम्बन्ध का उदाहरण दीजिए, जो
(i) सममित हो परन्तु न तो स्वतुल्य हो और न संक्रामक हो।
(ii) संक्रामक हो परन्तु न तो स्वतुल्य हो और न सममित हो।
(iii) स्वतुल्य तथा सममित हो किन्तु संक्रामक न हो।
(iv) स्वतुल्य तथा संक्रामक हो किन्तु सममित न हो।
(v) सममित तथा संक्रामक हो किन्तु स्वतुल्य न हो।
हल :
(i)
माना A एक समतल में सरल रेखाओं का समुच्चय है तथा R = { (a, b) : a, b पर लम्ब है }

  1. रेखा a, b पर लम्ब है तो b रेखा a पर लम्ब है।
    ∴ R सममित सम्बन्ध है।
  2. R स्वतुल्य नहीं है, क्योंकि रेखा a अपने आप पर ही लम्ब नहीं हो सकती है।
  3. R संक्रामक नहीं है, यदि a रेखा b पर लम्ब है, b रेखा c पर लम्ब है तो a रेखा c पर लम्ब नहीं

(ii)
माना A एक वास्तविक संख्याओं का समुच्चय है। तथा R = { (a, b) : a > b}

  1. R संक्रामक है, यदि a > b और b > c = a > c
  2. R स्वतुल्य नहीं है, a अपने आप से बड़ी संख्या नहीं है।
  3. R सममित नहीं है, यदि a > b तो b, a से बड़ा नहीं है।

(iii)
माना A = {1, 2, 3} तथा R = { (1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2) }
समतुल्य व सममित है। परन्तु संक्रामक नहीं है क्योंकि (1, 2) ∈ R, (2, 3) ∈ R, परन्तु  (1, 3) ∉ R

(iv)
माना A = {1, 2, 3} तथा
R = { (a, b) : a ≤ b} = {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3) }

  1. R स्वतुल्य है, क्योंकि (1, 1), (2, 2), (3, 3) ∈ R
  2. R संक्रामक है, क्योंकि (1, 2), (2, 3) ∈ R = (1, 3) ∈ R
  3. R सममित नहीं है, यदि a < b परन्तु b, a से कम नहीं है।

UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 2

(v)
माना A = {1, 2, 3} तब R = { (1, 1), (2, 2), (1, 2), (2, 1)} सममित व संक्रामक है, ।
परन्तु स्वतुल्य नहीं हैं क्योकि (3, 3) ∉R

प्रश्न 11.
सिद्ध कीजिए कि किसी समतल में स्थित बिन्दुओं के समुच्चय में  R : { ( P, Q : बिन्दु P की मूलबिन्दु से दूरी, बिन्दु Qकी मूलबिन्दु से दूरी के समान है} द्वारा प्रदत्त सम्बन्ध R एक तुल्यता सम्बन्ध है। पुनः सिद्ध कीजिए कि बिन्दु P ≠ (0,0) से सम्बन्धित सभी बिन्दुओं का समुच्चय P से होकर जाने वाले एक ऐसे वृत्त को निरूपित करता है, जिसका केन्द्र मूलबिन्दु पर है।

हल :
दिया है, A समतल में बिन्दुओं को समुच्चय है। तथा R = { ( P, Q) : मूलबिन्दु से P तथा Q की दूरी समान है }
= { (P, Q) : OP = OQ}

  1. R स्वतुल्य है, क्योंकि OP अपने ही बराबर है।
  2. R सममित है, यक्योंकि OP = OQ ⇒ OQ = OP
  3. R संक्रामक है, क्योंकि OP = OQ,
    OQ = QR ⇒ OP =QR

1, 2 तथा 3 से स्पष्ट है कि R स्वतुल्य, सममित तथा संक्रामक है।
अत:
R तुल्यता सम्बन्ध है। चूँकि o मूलबिन्दु है तथा P वृत्त की परिधि पर रहता है अर्थात् यदि OP = K ⇒ बिन्दु P एक वृत्त पर रहता है जो 0 से K दूरी पर है। अतः बिन्दु P ≠ (0, 0) से सम्बन्धित सभी बिन्दुओं का समुच्चय P से होकर जाने वाले एक ऐसे वृत्त को निरूपित करता है, जिसका केन्द्र मूलबिन्दु पर है। (इति सिद्धम्)

UP Board Solutions

प्रश्न 12.
सिद्ध कीजिए कि समस्त त्रिभुजों के समुच्चय A में, R = { (T1 T2) : T1 T2, के समरूप है} द्वारा परिभाषित सम्बन्ध R एक तुल्यता सम्बन्ध है। भुजाओं 3, 4, 5 वाले समकोण त्रिभुज T1 भुजाओं 5, 12, 13 वाले समकोण त्रिभुज T2, तथा भुजाओं 6, 8, 10 वाले समकोण त्रिभुज T3  पर विचार कीजिए। T1 T2 और T3  में से कौन-से त्रिभुज परस्पर सम्बन्धित हैं?
हल :
तुल्यता संबंध सिद्ध करने के लिए प्रश्नावली 1 (A) के प्रश्न 16 का हल देखें।

(i)
त्रिभुज , की भुजाएँ 3, 4, 5 हैं त्रिभुज T, की भुजाएँ 5, 12, 13 हैं तथा त्रिभुज T3 की भुजाएँ 6, 8, 10 हैं। चूँकि त्रिभुज  T1, की भुजाएँ 3, 4, 5, त्रिभुज T2, की भुजाओं 5, 12, 13 के समानुपाती नहीं है। इसी प्रकार त्रिभुज T2 , की भुजाएँ 5, 12, 13 त्रिभुज  T3 की भुजाओं 6, 8, 10 के समानुपाती नहीं है, इसलिए ये त्रिभुज समरूप त्रिभुज नहीं होंगे।
पुनः
त्रिभुज  T3 तथा  T3 की भुजाएँ समानुपाती हैं, इसलिए यह समरूप त्रिभुज है।
अत:
त्रिभुज  T1 तथा  Tआपस में सम्बन्धित है।

प्रश्न 13.
सिद्ध कीजिए कि समस्त बहुभुजों के समुच्चय A में, R = { (p1, p2) : p1, तथा p}, की भुजाओं की संख्या समान है। प्रकार से परिभाषित सम्बन्ध R एक तुल्यता सम्बन्ध है। 3,4 और 5 लम्बाई की भुजाओं वाले समकोण त्रिभुज से सम्बन्धित समुच्चय A के सभी अवयवों का समुच्चय ज्ञात कीजिए।
हल :
दिया है, A समस्त बहुभुजों का समुच्चय है। तथा R = { (p1, p2) : p1, p2, की भुजाओं की संख्या बराबर है।
(i)

  1. R स्वतुल्य है, क्योंकि प्रत्येक बहुभुज की भुजाओं की संख्या स्वयं के समान होती है।
  2. R सममित है, यदि बहुभुज  p1, p2, की भुजाएँ  n है तो बहुभुज pऔर p1,की भुजाएँ भी n ही होंगी।
  3. R संक्रामक है, यदि बहुभुज  p1, p2 औरp2, p3 प्रत्येक की n भुजाएँ है तो p1 और p3 की भुजाएँ भी n ही होंगी।

अतः
1, 2 तथा 3 से स्पष्ट है कि R स्वतुल्य, सममित तथा संक्रामक हैं।
अतः
R एक तुल्यता सम्बन्ध है।

(ii)
सभी त्रिभुजों का समुच्चय त्रिभुज T से सम्बन्धित है।

प्रश्न 14.
मान लीजिए कि X Y – तल में स्थित समस्त रेखाओं का समुच्चय L है और L में R = { (L1,L2) : L1 समान्तर है L2 के } द्वारा परिभाषित सम्बन्ध R है। सिद्ध कीजिए कि R एक तुल्यता सम्बन्ध है। रेखा y = 2 x + 4 से सम्बन्धित समस्त रेखाओं का समुच्चय ज्ञात कीजिए।
हल :
दिया है, L किसी X Y- तल में स्थित समस्त रेखाओं का समुच्चय है।
तथा R = { (L1, L2) : L1 समान्तर है L2 के }
(i)

  1. R स्वतुल्य है, क्योंकि प्रत्येक रेखा अपने आप के समान्तर है।
  2. R सममित है, यदि  Lरेखा, L2 के समान्तर है तो Lरेखा, Lके भी समान्तर होगी।
  3. R संक्रामक है, यदि  L1, Lऔर  L2, Lसमान्तर रेखाएँ हैं तो L1और Lभी समान्तरे रेखाएँ होंगी।

अतः
1, 2 तथा 3 से स्पष्ट है कि R स्वतुल्य, सममित तथा संक्रामक है।
अतः
R एक तुल्यता सम्बन्ध है।
इति सिद्धम्

(ii)
माना y = 2 x + c, जबकि c का मान कुछ भी हो सकता है।
अतः
y = 2 x +4 से सम्बन्धित रेखाओं का समुच्चय y = 2 x + c है।

UP Board Solutions

प्रश्न 15.
मान लीजिए कि समुच्चय {(1, 2, 3, 4)} में, R = { (1, 2), (2, 2), (1, 1), (4, 4), (1, 0, (3, 3), (3, 2)} द्वारा परिभाषित सम्बन्ध में है। निम्नलिखित में से सही उत्तर चुनिए।
(A) R स्वतुल्य तथा सममित है किन्तु संक्रामक नहीं है।
(B) R स्वतुल्य तथा संक्रामक है किन्तु सममित नहीं है।
(C) R सममित तथा संक्रामक है किन्तु स्वतुल्य नहीं है।
(D) R एक तुल्यता सम्बन्ध है।
हल :
दिया है, A = {1, 2, 3, 4}
तथा R = { (1, 2), (2, 2), (1, 1), 4, 4), (1, 3), (3, 3), (3, 2) }

  1. R स्वतुल्य है, क्योकि (1, 1), (2, 2), (3, 3), (4, 4) ∈ R
  2. R सममित नहीं है, क्योंकि (1,2) ∈ R परन्तु (2,1) ∉ R
  3. R संक्रामक है, क्योंकि (1, 3) ∈ R,(3, 2) ∈ R = (1, 2) ∈ R

अत:
1, 2 तथा 3 से स्पष्ट है कि R स्वतुल्य तथा संक्रामक है परन्तु सममित नहीं है।
अत:
विकल्प (B) सही है।

प्रश्न 16.
यदि प्राकृतिक संख्याओं के समुच्चय N में सम्क्न्ध में इस प्रकार है कि R = {(a, b) : a = b -2, b> 6} तो सही उत्तर चुनिए ।
(a) (2,4) ∈ R,
(b) (3, 8) ∈ R,
(c) (6, 8) ∈ R
(d) (8, 7) ∈ R
हल :
6 = 8 – 2, तथा 8 > 6
∴ (6, 8) ∈ R
अत: विकल्प (c) सही है।

Chapter 1 Relations and Functions Ex 1.2

प्रश्न 1.
सिद्ध कीजिए कि f(x) = [latex s=2]\frac { 1 }{ x }[/latex]  द्वारा परिभाषित फलन f : R→ R* एकैकी तथा आच्छादक है, जहाँ  R* सभी ऋणेतर वास्तविक संख्याओं का समुच्चय है। यदि प्रान्त Rको N से बदल दिया जाए, जबकि सहप्रांत पूर्ववत  R* ही रहे, तो भी क्या यह परिणाम सत्य होगा?
हल :
(a)
(i) दिया है, f (x) = [latex s=2]\frac { 1 }{ x }[/latex] यदि f (x1) = f (x2)  ⇒ [latex s=2]\frac { 1 }{ { x }_{ 1 } }[/latex] = [latex s=2]\frac { 1 }{ { x }_{ 2 } } [/latex] 
x1 = x2
अत:
प्रान्त के प्रत्येक अवयव का एक ही प्रतिबिम्ब है।
अतः
f एकैकी फलन है।

(ii)
दिया है, ye
y = [latex s=2]\frac { 1 }{ x }[/latex]
x = [latex s=2]\frac { 1 }{ y }[/latex]
y ≠ 0
सहप्रान्त का प्रत्येक अवयव प्रान्त में क्रमश: एक ही अवयव का प्रतिबिम्ब है।
∴ f आच्छादक फलन है।
∴ f एकैकी व आच्छादक फलन है।

(b)
यदि प्रान्त R को N से बदल दिया जाता है तब सहप्रान्त R वही रहे तो f : N → R
जब f (x1) = f (x2)
⇒ [latex s=2]\frac { 1 }{ { x }_{ 1 } }[/latex] = [latex s=2]\frac { 1 }{ { x }_{ 2 } } [/latex]
x1 = x2 ∈ N
 ⇒  f एकैकी है।
परन्तु सहप्रान्त का प्रत्येक अवयव प्रान्त के अवयव का प्रतिबिम्ब न हो।
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 3
इस प्रकार f एकैकी है परन्तु आच्छादक नहीं है। (इति सिद्धम्)

UP Board Solutions

प्रश्न 2.
निम्नलिखित फलनों की एकैक (Injective) तथा आच्छादी (Surjective) गुणों की जाँच कीजिए :
(i) f (x) = x2  द्वारा प्रदत्त f : N → N फलन है।
(ii) f (x) = x2  द्वारा प्रदत्त f : Z → Z फलन है।
(iii) f (x) = x2  द्वारा प्रदत्त f : R → R फलन है।
(iv) f (x) = x3  द्वारा प्रदत्त f : N → N फलन है।
(v) f (x) = x3  द्वारा प्रदत्त f : Z → Z फलन है।
हल :
(i)
दिया है, f ( x ) = x2  और  f : N → N
(a)
f ( x) = f ( x) ⇒ [latex]{ x }_{ 2 }^{ 1 }[/latex]
⇒  x1 = x2 ,
⇒  x1 = x2 ∈ N
f  एकैकी है।
(b)
परन्तु सहप्रान्त में ऐसे कुछ अवयव हैं जो प्रान्त के किसी भी अवयव का प्रतिबिम्ब नहीं हैं।

उदाहरणार्थ :
माना 3 सहप्रान्त में है तो 3 प्रान्त के किसी भी अवयव को प्रतिबिम्ब नहीं होगा।
∴ f आच्छादक नहीं है।
अत:
f एकैकी है परन्तु आच्छादक नहीं है।

(ii)
f (x) = x2   f : Z → Z , जबकि  f (x) = x
(a)
f (-1) = f (1) = 1 ⇒ -1 और 1 का प्रतिबिम्ब 1 है।
∵ प्रान्त के दो भिन्न-भिन्न अवयवों -1 और 1 का परिसर R में एक ही f-प्रतिबिम्ब 1 पर है।
∵ प्रतिबिम्ब समान है।
∴ f एकैकी नहीं है।
(b)
सहप्रान्त में ऐसे अवयव हैं जो प्रान्त के किसी अवयव में प्रतिबिम्ब नहीं हैं।
उदाहरणार्थ-3
सहप्रान्त में है, परन्तु 3 प्रान्त के किसी अवयव का प्रतिबिम्ब नहीं है।
∴ f आच्छादक नहीं है।
अत:
f न तो एकैकी है और न ही आच्छादक है।

(iii)
f : R → R, यदि f (x) = x2
(a)
( -1 )= (1)2 = f (-1) = f (1)
अतः
-1 और 1 का प्रतिबिम्ब 1 है। अर्थात् प्रान्त के दो भिन्न-भिन्न अवयवों -1 और 1 का परिसर R में एक ही f- प्रतिबिम्ब 1 है। अर्थात् प्रतिबिम्ब समान है,
∴ f एकैकी नहीं है।
(b)
-2 सहप्रान्त में है परन्तु यह प्रान्त के किसी भी अवयव का प्रतिबिम्ब नहीं है।
अत:
f आच्छादक नहीं है।
∴ f न तो एकैकी है और न ही आच्छादक है।
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 4

प्रश्न 3.
सिद्ध कीजिए कि f(x) = [x] द्वारा प्रदत्त महत्तम पूर्णाक फलन f : R – R, न तो एकैकी है और न आच्छादक है, जहाँ [x], x से कम या उसके बराबर महत्तम पूर्णांक को निरूपित करता है।
हल :
स्पष्ट है कि f(x) का प्रान्त = R
तथा f(x) = 0 Y x e[0, 1)
∴ f : R → R एकैकी नहीं है।
पुनः f(x) केवल पूर्णांक मान ग्रहण करता है।
∴ सह प्रान्त के अपूर्णांक अवयव प्रान्त के किसी भी अवयव के प्रतिबिम्ब नहीं हैं।
∴ f : R → R आच्छादक नहीं है।
अत: f : R → R न तो एकैकी है और न ही आच्छादक।

UP Board Solutions

प्रश्न 4.
सिद्ध कीजिए कि f ( x ) =| x | द्वारा प्रदत्त मापांक फलन f : R→ R, न तो एकैकी है। और न आच्छादक है, जहाँ | x | बराबर x , यदि x धन या शून्य है तथा| x | बराबर  – x, यदि x ऋण है।
हल :
यहाँ f : R → R, जबकि f ( 3 ) = [x]
(a)
f (-1) = |- 1 | = 1, f(1) = |1| = 1
-1 और 1 का एक ही प्रतिबिम्ब है।
अत:
प्रान्त के दो भिन्न-भिन्न अवयवों -1 और 1 का परिसर R में एक ही f – प्रतिबिम्ब 1 है।
∵ प्रतिबिम्ब समान है।
इसलिए  f  एकैकी नहीं है।
(b)
सहप्रान्त की कोई भी ऋणात्मक संख्या प्रान्त के किसी भी अवयव का प्रतिबिम्ब नहीं है।
∴ f आच्छादक नहीं है।
अत:
f न तो एकैकी है और न ही आच्छादक है। इति सिद्धम्

प्रश्न 5.
सिद्ध कीजिए कि f :R → R
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 5
हल :
स्पष्टतया f(2) = 1 तथा f (3) = 1
∴ f(2) = f(3) जबकि 2 ≠ 3
∴ f एकैकी नहीं है। f का परिसर = {1, 0, -1} c R
∴ f अन्तः क्षेपी है।
अतः फलन न तो एकैकी है और न आच्छादक।

प्रश्न 6.
मान लीजिए कि A = {1, 2, 3}, B = {4, 5, 6, 7} तथाf = { (1, 4), (2, 5), (3, 6) } A से B तक एक फलन है। सिद्ध कीजिए कि f एकैकी है।
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 6

हल :
दिया है, A ={1, 2, 3}, B = {4, 5, 6, 7}
f : A → B इस प्रकार है कि f = { (1, 4 ), ( 2, 5 ), ( 3, 6 ) } A के प्रत्येक अवयव का अलग-अलग प्रतिबिम्ब है। इसलिए  f  एकैकी है।
( इति सिद्धम् )

प्रश्न 7.
निम्नलिखित में से प्रत्येक स्थिति में बताइये कि क्या दिए हुए फलन एकैकी, आच्छादक अथवा एकैकी आच्छादी (bijective) हैं। अपने उत्तर का औचित्य भी बताइये।
(i) f (x) = 3 – 4 द्वारा परिभाषित फलन f : R → R है।
(ii) f (x) = 1 + x2 द्वारा परिभाषित फलन f : R → R है।
हल :
(i)
यहाँ f : R – R, यदि f(x) = 3 – 4 x
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 7
अत:
f, बहु-एक फलन है।
∴ f एकैकी नहीं है।
(b)
पुनः x के प्रत्येक वास्तविक मान के लिए (1 + x) का मान सदैव 1 या 1 से बड़ा होगा।
∴ परिसर R में 1 से छोटे अवयव (0 तथा ऋणात्मक संख्याएँ ), डोमेन R के किसी भी अवयव के f-प्रतिबिम्ब नहीं होंगे।
∴ f – अन्त:क्षेपी फलन है अर्थात् आच्छादक नहीं है।
इसलिए दिया हुआ फलन न तो एकैकी है और न ही आच्छादक है।

UP Board Solutions

प्रश्न 8.
मान लीजिए A तथा B दो समुच्चय हैं। सिद्ध कीजिए किf : A × B → B × A, इस प्रकार हैं कि f (a, b) = f (b, a) एक एकैकी आच्छादक फलन है।
हल :
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 8UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 9
प्रश्न 9.
दिखाइए कि फलन f : N → N जोकि
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 10
हल :
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 11
प्रश्न 10.
मान लीजिए कि A= R → { 3 } तथा  B = R – { 1 } हैं। (x) = [latex s=2]\frac { x-2 }{ x-3 } [/latex] द्वारा परिभाषित फलन f : A → B पर विचार कीजिए। क्या । एकैकी तथा आच्छादक है? अपने का औचित्य भी बतलाइए।
हल :
दिया है , f : A → B , तथा
A= R → { 3 } तथा  B = R – { 1 } हैं। (x) = [latex s=2]\frac { x-2 }{ x-3 } [/latex] द्वारा परिभाषित फलन f : A → B पर विचार कीजिए। क्या । एकैकी तथा आच्छादक है? अपने का औचित्य भी बतलाइए।
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 12

इससे सिद्ध होता है कि सहडोमेन R का स्वेच्छ अवयव y ≠ 1, डोमेन R के अवयव x का f-प्रतिबिम्ब है अर्थात् सहडोमेन R का प्रत्येक अवयव, डोमेन R के किसी-न-किसी अवयव का f-प्रतिबिम्ब अवयव है।
फलन f का परिसर = सहडोमेन R फलन f आच्छादक है।
इसलिए दिया हुआ फलन । एकैकी तथा आच्छादक है।

प्रश्न 11.
मान लीजिए : R – R; f (3) = * द्वारा परिभाषित है। सही उत्तर का चयन कीजिए।
(a) एकैकी आच्छादक है।
(b) f बहुएक आच्छादक है।
(c) f एकैकी है किन्तु आच्छादक नहीं है,
(d) f न तो एकैकी है और न आच्छादक है।
हल :
दिया है, f : R → R, यदि f (x) = x4
(i) f(-1) = (-1)4 = 1, f(1) = 14 = 1
f(-1) = f(1)
∴ -1 और 1 का प्रतिबिम्ब 1 है। इसलिए f एकैकी नहीं है।

(ii)
सहप्रान्त का अवयव -1 प्रान्त के किसी भी अवयव का प्रतिबिम्ब नहीं है। इसलिए f आच्छादक नहीं है। अत: f न तो एकैकी है और न ही आच्छादक है।
अत: विकल्प (d) सही है।

UP Board Solutions

प्रश्न 12.
मान लीजिए कि f(a) = 3x द्वारा परिभाषित फलन f : R → R है। सही उत्तर चुनिए :
(a) f एकैकी आच्छादक है
(b) f बहुएक आच्छादक है।
(c) f एकैकी है परन्तु आच्छादक नहीं है
(d) f न तो एकैकी है और न आच्छादक है।
हल :
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 13
इससे सिद्ध होता है कि सहडोमेन R का स्वेच्छ अवयव y, डोमेन R के किसी-न-किसी अवयव का f-प्रतिबिम्ब अवश्य है। फलन f का परिसर = सहडोमेन R, फलन / आच्छादक है। इसलिए f एकैकी तथा आच्छादक है। अतः विकल्प (a) सही है।

Chapter 1 Relations and Functions Ex 1.3

प्रश्न 1.
मान लीजिए कि f : {1, 3, 4} {1,2, 5} तथा f : {1,2, 5} {1, 3}, f = { (1, 2), (3, 5), (4, 10} तथा g = { (1, 3), (2, 3), (5, 10} द्वारा प्रदत्त हैं। gof ज्ञात कीजिए।
हल :
दिया है, f : { 1, 3, 4 } → { 1, 2, 5 } तथा g : { 1, 2, 5 } → { 1 , 3 } .
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 14

प्रश्न 2.
मान लीजिए कि f, g तथा h, R से R तक दिए फलन हैं। सिद्ध कीजिए कि
(f + g) oh = foh + goh
(f.g) oh = (foh). (goh)
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 15

प्रश्न 3.
gof तथा fog ज्ञात कीजिए, यदि
(i) f (x) = | x | तथा g (x) =| 5 x – 2|
(ii) f (x) = g x3 तथा g (x) = x1/3
हल :
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 16

प्रश्न 4.
यदि y(x) = [latex]\frac { 4x+3 }{ 6x-4 } ,x\neq \frac { 2 }{ 3 }[/latex] तो सिद्ध कीजिए कि सभी [latex]x\neq \frac { 2 }{ 3 }[/latex] के लिए fof (x) = x है। f का प्रतिलोम भी ज्ञात कीजिए।
हल :
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 17
f का प्रतिलोम तभी ज्ञात किया जा सकता है जब f एकैकी आच्छादक हो। f एकैकी है माना कि x1 x2 ∈ प्रान्त तब f (x1) = f(x2)
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 18

प्रश्न 5.
कारण सहित बताइए कि क्या निम्नलिखित फलनों के प्रतिलोम हैं ?
(i) f : {1, 2, 3, 4} → {10} जहाँ f = {(1, 10), (2, 10), (3, 10), 4, 10)}
(ii) g: {5, 6, 7, 8} → {1, 2, 3, 4} जहाँ g = {(5, 4), (6, 3), (7, 4), (8, 2)}
(iii) h : {2, 3, 4, 5} → {7, 9, 11, 13} जहाँ h = {(2, 7), (3, 9), (4, 11), (5, 13)}
हल :
(i) नहीं, क्योंकि एक बहुएक फलन है।
(ii) नहीं, इयोंकि g एक बहुएक फलन है।
(iii) हाँ, क्योंकि h एक एकैकी आच्छादक फलन है।

UP Board Solutions

प्रश्न 6.
यदि f :[-1, 1] → Y: f(x) = [latex]\frac { x }{ x+2 } ,x\neq -2[/latex] तथा Y = परिसर (f) तो दिखाइए कि f-1 व्युत्क्रमणीय है तथा ज्ञात कीजिए।
हल :
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 19
प्रश्न 7.
f (x) = 4 x + 3 द्वारा प्रदत्त फलन f : R → R पर विचार कीजिए। सिद्ध कीजिए कि f व्युत्क्रमणीय है। f का प्रतिलोम फलन ज्ञात कीजिए।
हल :
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 20

प्रश्न 8.
f(x) = x + 4 द्वारा प्रदत्त फलन f : R → [4,∞) पर विचार कीजिए। सिद्ध कीजिए किf व्युत्क्रमणीय है तथा का प्रतिलोम -1,f (y) = [latex]\sqrt { y-4 } [/latex] द्वारा प्राप्त होता है, जहाँ R सभी ऋणेतर वास्तविक संख्याओं का समुच्चय है।
हल :
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 21

प्रश्न 9.
यदि f : R+ → [-5, ∞]: f (3) = 9x2 + 6x – 5 तो सिद्ध कीजिए कि f व्युत्क्रमणीय है तथा f-1(y) = [latex]\left( \frac { \sqrt { Y+6-1 } }{ 3 } \right)[/latex]
हल :
उपरोक्त प्रश्न की भाँति स्वयं हल करें।

प्रश्न 10.
मान लीजिए कि f : X→ Y एक व्युत्क्रमणीय फलन है। सिद्ध कीजिए कि f  को प्रतिलोम फलन अद्वितीय (unique) है।
हल :
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 22

प्रश्न 11.
f : { 1, 2, 3} {a, b, c}, f (1) = a, f (2) = b तथा f (3) = c द्वारा प्रदत्त फलन f पर विचार कीजिए। f -1 ज्ञात कीजिए और सिद्ध कीजिए कि  (f -1 )-1 =  f है।
हल :
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 23
प्रश्न 12.
मान लीजिए कि f : A → B एक व्युत्क्रमणीय फलन है। सिद्ध कीजिए कि f-1 का प्रतिलोम f है अर्थात् (f-1)-1 = f है।
हल :
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 24
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 25
प्रश्न 13.
प्रश्नावली 1(C) का प्रश्न 5 व हल देखें।

प्रश्न 14.
प्रश्नावली 1(C) का प्रश्न 20 व हल देखें।

Chapter 1 Relations and Functions Ex 1.4

प्रश्न 1.
प्रश्नावली 1(D) का प्रश्न 1 व हल देखें।

प्रश्न 2.
प्रश्नावली 1(D) का प्रश्न 2 व हल देखें।

UP Board Solutions

प्रश्न 3.
प्रश्नावली 1(D) का प्रश्न 16 व हल देखें।

प्रश्न 4.
प्रश्नावली 1(D) का प्रश्न 17 व हल देखें।

प्रश्न 5.
मान लीजिए कि समुच्चय { 1,2,3,4,5 } में एक द्विआधारी संक्रिया *’, a *’ b = a तथा b का HCF द्वारा परिभाषित है। क्या संक्रिया *’ उपर्युक्त प्रश्न 4 में परिभाषित संक्रिया * के समान है? अपने उत्तर का औचित्य भी बतलाइए।
हल :
प्रश्नानुसार, समुच्चय {1, 2, 3, 4, 5} संक्रिया a *’ b H.C.F. a तथा b द्वारा परिभाषित है। द्विआधारी संक्रिया * के लिए सारणी निम्नलिखित होगी ।

*’ 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

यह संक्रिया सारणी प्रश्न 4 में दी गई संक्रिया सारणी के समान है।
अतः
द्विआधारी संक्रिया *’ तथा * समान होगी।

प्रश्न 6.
मान लीजिए कि N में एक द्विआधारी संक्रिया *, a* b = a तथा b का L.C.M. द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए।
(i) 5 * 7, 20 * 16
(ii) क्या संक्रिया * क्रमविनिमेय है?
(iii) क्या * साहचर्य है?
(iv) N में * का तत्समक अवयव ज्ञात कीजिए।
(v) N के कौन-से अवयव * संक्रिया के लिए व्युत्क्रमणीय हैं?
हल:
प्रश्न में समुच्चय N = प्राकृत संख्याओं का समुच्चय में * संक्रिया, a * b = a, b का L.C.M. द्वारा परिभाषित है।
(i)
5 * 7 = 5 व 7 का L.C.M. = 35
20 * 16 = 20 वे 16 का L.C.M. = 80
∴ 5 * 7 = 35 , 20 *16 = 80

(ii)
a*b = a, b का  L.C.M.
b* a = b, a का  L.C.M.
∵ a * b तथा b* a का L.C.M. बराबर है।
इसलिए
⇒  a * b = b * a
∵ स्पष्ट है कि संक्रिया * क्रमविनिमेय द्विआधारी संक्रिया है।

(iii)
a * (b * c) = a * (b, c का L.C.M.)
= a, b, c का  L.C.M.
(a*b)* c = (a, b का L.C.M.) *C
= a, b, c का L.C.M.
∵ a* (b * c) तथा (a * b)* c के L.C.M. बराबर हैं।
⇒ (a * b)* c = a * (b* c)
∴ स्पष्ट है कि संक्रिया * साहचर्य द्विआधारी संक्रिया है।

(iv)
* संक्रिया का तत्समक अवयव 1 है।
1 * a = a * 1 = a

(v)
N * N → N, * संक्रिया का a * b = a, b का L.C.M. द्वारा परिभाषित किया गया है। यदि a = 1, b = 1, a * b = 1 अन्यथा नहीं
⇒ 1 * 1 =1
⇒ 1 के लिए व्युत्क्रमणीय है।

प्रश्न 7.
प्रश्नावली 1(D) का प्रश्न 12 व हल देखें।

प्रश्न 8.
प्रश्नावली 1(D) का प्रश्न 13 व हल देखें।

UP Board Solutions

प्रश्न 9.
प्रश्नावली 1(D) का प्रश्न 9 व हल देखें।

प्रश्न 10.
प्रश्न 9 में दी गई संक्रियाओं में किसी का तत्समक है, वह बतलाइए।
हल :
(i)
दिया है, a * b = a – b यदि e तत्समक अवयव हो तब ।
a * e = a – e  तथा  e * a = e – a
a – e ≠ e – a  ⇒  a * e ≠ e * a
अत :
स्पष्ट है कि e का अस्तित्व नहीं है।

(ii)
दिया है, a * b = a2 + b2
∴ a * e = a2 + e2  तथा e * a = e2+a2
∵ हम देखते हैं कि
a *e = e * a ≠ 1
अत :  
स्पष्ट है कि e का अस्तित्व नहीं है।

(iii)
दिया है, a * b = a+ ab
a* e = a + ae तथा
∵ हम देखते हैं कि a * e ≠ e * a ≠ a
अत :
स्पष्ट है कि e का अस्तित्व नहीं है।

(iv)
दिया है, a* b = (a – b)2
a * e = (a – e)2 ≠ a तथा e * a = (e – a)2 ≠ a
a * e =e * a ≠ a
अत :
स्पष्ट है कि e का अस्तित्व नहीं है।

UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 26

अतः
स्पष्ट है कि e का अस्तित्व नहीं है।

प्रश्न 11.
प्रश्नावली 1(D) का प्रश्न 14 हल देखें।

प्रश्न 12.
बताइए कि क्या निम्नलिखित कथन सत्य हैं या असत्य हैं। औचित्य भी बतलाइए।
(i) समुच्चय N में किसी भी स्वेच्छ द्विआधारी संक्रिया * के लिए a * a = a, ∀ a ∈ N
(ii) यदि N में * किसी क्रमविनिमेय द्विआधारी संक्रिया है तो a* (b * c) = (c * b) * a
हल :
प्रश्नानुसार, द्विआधारी संक्रिया समुच्चय N पर इस प्रकार परिभाषित की गयी है कि a * a = a, ∀ a ∈ N
(i)
यहाँ पर * संक्रिया में केवल एक ही अवयव का प्रयोग किया गया है।
अत :
स्पष्ट है कि यह कथन असत्य है।

(ii)
वास्तविक संख्याओं में समुच्चय पर संक्रिया * क्रमविनिमेय है।
b * c = c * b
∴ तथा (c * b) * a = (b * c) * a = a * (b * c)
∴ a* (b * c) = (c * b) * a
∴ यह कथन सत्य है।

UP Board Solutions

प्रश्न 13.
a * b= a3 + b3 प्रकार से परिभाषित N में एक द्विआधारी संक्रिया * पर विचार कीजिए। अब निम्नलिखित में से सही उत्तर का चयन कीजिए
(A) * साहचर्य तथा क्रमविनिमेय दोनों है।
(B) * क्रमविनिमेय है किन्तु साहचर्य नहीं है।
(C) * साहचर्य है किन्तु क्रमविनिमेय नहीं है।
(D) * न तो क्रमविनिमेय है और न साहचर्य है।
हल :
प्रश्नानुसार, द्विआधारी संक्रिया * को समुच्चय N पर इस प्रकार परिभाषित किया गया है कि
a * b= a3 + b3
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 27
UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions image 28

We hope the UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions (सम्बन्ध एवं फलन) help you. If you have any query regarding UP Board Solutions for Class 12 Maths Chapter 1 Relations and Functions (सम्बन्ध एवं फलन), drop a comment below and we will get back to you at the earliest.

CBSE Sample Papers for Class 10 Maths Paper 4

These Sample papers are part of CBSE Sample Papers for Class 10 Maths. Here we have given CBSE Sample Papers for Class 10 Maths Paper 4.

CBSE Sample Papers for Class 10 Maths Paper 4

Board CBSE
Class X
Subject Maths
Sample Paper Set Paper 4
Category CBSE Sample Papers

Students who are going to appear for CBSE Class 10 Examinations are advised to practice the CBSE sample papers given here which is designed as per the latest Syllabus and marking scheme as prescribed by the CBSE is given here. Paper 4 of Solved CBSE Sample Paper for Class 10 Maths is given below with free pdf download solutions.

Time allowed: 3 Hours
Maximum Marks: 80

General Instructions

 

  • All questions are compulsory.
  •  The question paper consists of 30 questions divided into four sections A, B, C andD.
  • Section A contains 6 questions of 1 mark each. Section B contains 6 questions of 2 marks each. Section C contains 10 questions of 3 marks each. Section D contains 8 questions of 4 marks each,
  • There is no overall choice. However, an internal choice has been provided in four questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
  • Use of calculators is not permitted.

Section-A

This Calculator computes the Degree and Leading Coefficient Calculator term of a given Polynomial.

Question 1.
The values of the remainder r, when a positive integer a is divided by 3 are 0 and 1 only. Justify your answer.

Question 2.
Find the altitude of an equilateral triangle when each of its side is ‘a’ cm.

Question 3.
If x =[latex s=2]\frac { 2 }{ 3 } [/latex] and x = – 3 are roots of the quadratic equation ax2 + 7x + b = 0, find the values of a and b.

Question 4.
If A + B = 90° and sec A =[latex s=2]\frac { 5 }{ 3 } [/latex] , then find the value of cosec B.

Question 5.
The first three terms of an AP respectively are 3y – 1, 3y + 5 and 5y + 1. Then find y.

Find the Value of x is used to consider unknown value.

Question 6.
Find the value of x such that PQ = QR where co-ordinates of P, Q, R are (6, -1), (1, 3), and (x, 8) respectively.

Section-B

Question 7.
Find the LCM of 66 & 486 by the Prime factorisation method. Hence find their HCF.

Question 8.
The sum of the 5th and the 9th terms of an AP is 30. If its 25th term is three times its 8th term, find the AP.

Question 9.
A bag contains 5 red balls and some blue balls. If the probability of drawing a blue ball is double that of a red ball, then find the number of blue balls in the bag.

Question 10.
Find the area of the triangle ABC with A (1, – 4) and mid-points of sides through A being (2, -1) and (0,-1).

Question 11.
Find the value of a so that the point (3, a) lies on the line represented by 2x – 3y = 5.

Question 12.
Two dice are thrown simultaneously. What is the probability that the sum of the numbers appearing on the dice is a prime number?

Section-C

Question 13.
Find the HCF of 81 and 237 and express it as a linear combination of 81 and 237.

Question 14.
If a and (1 are the zeroes of the quadratic polynomial p(s) = 3 s2 – 6s + 4, find the value of
[latex s=2]\frac { \alpha }{ \beta } +\frac { \beta }{ \alpha } +2\left( \frac { 1 }{ \alpha } +\frac { 1 }{ \beta } \right) +3\alpha \beta [/latex].

Question 15.
In fig., PSR, RTQ and PAQ are three semicircles of diameters 10 cm, 3 cm and 7 cm respectively. Find the perimeter ofthe shaded region.
[Use π = 3.14]
CBSE Sample Papers for Class 10 Maths Paper 4 img 1

Question 16.
150 spherical marbles, each of diameter 1.4 cm, are dropped in a cylindrical vessel of diameter 7 cm containing some water, which are completely immersed in water. Find the rise in the level of water in the vessel.
OR
Volume and surface area of a solid hemisphere are numerically equal. What is the diameter ofhemisphere?

Question 17.
The three vertices ofaparallelogram ABCD are A(3,^l), B(-l,-3)andC(-6,2). Find the coordinates of vertex D and find the area of ABCD.

Question 18.
If sec θ + tan θ = p, then prove that [latex s=2]\frac { { p }^{ 2 }-1 }{ { p }^{ 2 }+1 } [/latex] = sin θ
OR
If α + β = 90° and α = 2β , then find the value of cos2 α + sin2 β

Question 19.
If the median for the following frequency distribution is 28.5, find the values ofx and y:
CBSE Sample Papers for Class 10 Maths Paper 4 img 2
OR
The mean of marks scored by 100 students was found to be 40. Later on it was discovered that a score of 53 was misread as 83. Find the correct mean.

Question 20.
In the adjoining figure, PA and PB are tangents to a circle with centre O. If OP is equal to the diameter of the circle, prove that ∆ABP is an equilateral triangle.
CBSE Sample Papers for Class 10 Maths Paper 4 img 3

Question 21.
Solve: 2x2 +3y2 = 35; [latex s=2]\frac { { x }^{ 2 } }{ 2 } +\frac { { y }^{ 2 } }{ 3 } [/latex] = 5

Question 22.
Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of triangle PQR. Prove that ∆ABC ~ ∆PQR
OR
In the given figure, ∆ABC and ∆DBC are on the same base BC. AD and BC intersect at O. Prove that
[latex]\frac { ar(\triangle ABC) }{ ar(\triangle DBC) } =\frac { AO }{ DO } [/latex].
CBSE Sample Papers for Class 10 Maths Paper 4 img 4

Section-D

Question 23.
On a straight line passing through the foot of a tower, two points C and D are at distances of 4 m and 16m from the foot respectively. If the angles of elevation from C and D of the top of the tower are complementary, then find the height of the tower.
OR
The angles of elevation and depression of the top and the bottom of a tower from the top of a building, 60 m high, are 30° and 60° respectively. Find the difference between the heights of the building and the tower and the distance between them.

Question 24.
An iron pole consisting of a cylindrical portion 110 cm. high and of base diameter 12cm. is surmounted by a cone 9 cm. high. Find the mass of the pole, given that 1 cm3 of iron has 8 gram mass (approx.).
[use 71 = 355/113].

Question 25.
If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then prove that the two triangles are similar.
OR
If a line divides any two sides of a triangle in the same ratio, then prove that the line is parallel to the third side.

Question 26.
CBSE Sample Papers for Class 10 Maths Paper 4 img 5

Question 27.
Draw a circle of radius 4 cm. Take a point P outside the circle. Without using the centre of the circle, draw two tangents to the circle from point P.

Question 28.
The frequency distribution of scores obtained by 230 candidates in a medical entrance test is as follows:
CBSE Sample Papers for Class 10 Maths Paper 4 img 6
Draw cumulative frequency curve or ogive by more than method.

Question 29.
If the equation (1 + m2) x2 + 2mcx + c2 – a2 = 0 has coincident roots show that c2 = a2 (1 + m2)
or c = ±a[latex]\sqrt { 1+{ m }^{ 2 } } [/latex] .
OR
If x = 4 and x = -5 are roots of3x2-2mx + 2n = 0, find the values of ‘m’ and ‘n’.

Question 30.
If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then find the numbers.

Solutions
Section-A

Solution 1.
No. According to Euclid’s division lemma, a=3q + r, where 0 ≤ r < 3 and r is an integer. Therefore, the values of r can be 0, 1 or 2. (1)

Solution 2.
CBSE Sample Papers for Class 10 Maths Paper 4 img 7

Solution 3.
CBSE Sample Papers for Class 10 Maths Paper 4 img 8

Solution 4.
Given, A + B = 90° and sec A = [latex s=2]\frac { 5 }{ 3} [/latex]
⇒ sec(90°-B) =[latex s=2]\frac { 5 }{ 3} [/latex] (∵ A + B = 90°)
∴ cosec B = [latex s=2]\frac { 5 }{ 3} [/latex] (1)

Solution 5.
a1 = 3y- 1, a2 = 3y+ 5, a3 = 5y+ 1
∴ a2 – a1 = 3 – a1
⇒(3y + 5) – (3y- 1) = (5y + 1) – (3y +5) ⇒6 = 2y-4 (1)
⇒ 2y=10 ⇒ y=5

Solution 6.
Since, PQ = QR ⇒ Q is mid-point of PR.
∴ Using mid-point formula,
1 = [latex s=2]\frac { 6+x }{ 2} [/latex] ⇒ 6 + x = 2 ⇒x = -4. (1)

Section-B

Solution 7.
The Prime factorisation of 66 & 486 gives
66 = 2 × 3 × 11
486 = 2 × 3 ×3 ×3 × 3 × 3= 2 × 35 (1/2)
∴The LCM of these two integer is
2 × 35 × 11 = 5346 (1/2)
HCF (66,486) = [latex]\frac { 66\times 486 }{ LCM(66,486) } =\frac { 66\times 486 }{ 5346 } [/latex] = 6 (1)

Solution 8.
Given : a5 + a9 = 30
a25 = 3a8
Now, a + 4d + a+8d = 30
⇒ 2a+ 12d = 30
⇒ a + 6d = 15 …(i) (1/2)
and, a + 24d=3a + 21d ⇒2a-3d = 0 …(ii) (1/2)
From eqs. (i) and (ii)
CBSE Sample Papers for Class 10 Maths Paper 4 img 9

Now, put d = 2 in eq. (i)
a+ 12=15 ⇒ a = 3
Required A.P. = 3,5,7,………….. (1/2)

Solution 9.
Let the number of blue balls = x
∴ Total number ofballs = 5 + x
P (blue ball) = [latex s=2]\frac { x }{ 5+x } [/latex] (1/2)
P (red ball) = [latex s=2]\frac { 5 }{ 5+x } [/latex] (1/2)
Given that P (blue) = 2 × p (red)
[latex s=2]\frac { x }{ 5+x } [/latex] = 2 × [latex s=2]\frac { 5 }{ 5+x } [/latex]
⇒ [latex s=2]\frac { x }{ 5+x } [/latex] = [latex s=2]\frac { 10 }{ 5+x } [/latex]
On solving we get x = 10 (1)

Solution 10.
CBSE Sample Papers for Class 10 Maths Paper 4 img 10
P is the mid-point ofAB
∴ x+1=4⇒x = 3 [By Mid-Point formula]
y-4 = -2 ⇒ y = 2
⇒ B(3,2) (1/2)
Similarly,
z + 1 = 0 ⇒z = -1
and t – 4 = -2 ⇒t = 2
⇒ C(—1,2)
∴ Area ∆ABC (1/2)
= [latex s=2]\frac { 1 }{ 2 } [/latex][1(2 – 2)+3(2+4)-1(-4-2)] ⇒[latex s=2]\frac { 1 }{ 2 } [/latex] ×24 = 12 sq units (1)

Solution 11.
Since, (3, a) lies on the line 2x – 3y = 5
So, 2 × 3 – 3a = 5 (1)
⇒ 6 —3a = 5 ⇒ a= [latex s=2]\frac { 1 }{ 3 } [/latex] (1)

Solution 12.
Total number of possible outcomes when two dice are thrown simultaneously =36 (1/2)
Sum of the numbers appearing on the dice
is a prime number i.e., 2,3,5,7 and 11
So, the possible outcomes are (1,1), (1,2), (2, 1), (1,4), (2,3), (3,2), (4,1), (1,6), (2,5),
(3,4), (4,3), (5,2), (6,1), (5,6) and (6,5).
Number of possible outcomes = 15 (1)
∴ Required probability = [latex s=2]\frac { 15 }{ 36 } [/latex] = [latex s=2]\frac { 5 }{ 12 } [/latex] (1/2)

Section-C

Solution 13.
Given integers are 81 and 237 such that 81 < 237.
Applying Euclid’s division lemma to 81 and 237, we get
CBSE Sample Papers for Class 10 Maths Paper 4 img 11
Since the remainder 75 ≠ 0. So, consider the divisor 81 and the remainder 75 and apply division lemma to get
CBSE Sample Papers for Class 10 Maths Paper 4 img 12
The remainder at this stage is zero. So, the last divisor i.e. 3 is the HCF of 81 and 237.
To represent the HCF as a linear combination of the given two numbers, we start from the last but one step and successively eliminate the previous remainders as follows :
From (iii), we have
3 = 75 – 6 × 12
⇒3 = 75-(81 – 75 × 1) ×12
[Substituting 6 = 81 -75 × 1 obtained from (ii)]
⇒ 3 = 75 – 12 × 81 + 12 × 75
⇒ 3 = 13 × 75 – 12 × 81
⇒ 3 = 13 × (237-81 × 2)-12 × 81 [Substituting 75 = 237 – 81 × 2 obtained from (i)] (1)
⇒ 3 = 13 × 237 – 26 × 81 – 12 × 81
⇒ 3 = 13 × 237 – 26 × 81 – 12 × 81
⇒ 3 = 13 × 237-38 × 81
⇒ 3 = 237 × + 81 y, where x = 13 and
y = -38 ….v (1)

Solution 14.
CBSE Sample Papers for Class 10 Maths Paper 4 img 13
CBSE Sample Papers for Class 10 Maths Paper 4 img 14

Solution 15.
Perimeter of shaded region
= Perimeter (QTR+ QAP + PSR) (1)
= π[latex]\left[ 5+\frac { 3 }{ 2 } \frac { 7 }{ 2 } \right] =\pi \left[ \frac { 20 }{ 2 } \right] [/latex] =10π = 31.4cm (2)

Solution 16.
Let the radius of spherical marble = 0.7 cm (1/2)
Volumeofl marble =[latex s=2]\frac { 4 }{ 3 } [/latex]πr3 = [latex s=2]\frac { 4 }{ 3 } [/latex]π(0.7)3 cm3 (1/2)
Volume of 150 marble = 200π(0.7)3 cm3 (1/2)
Let h be the rise in the height of water
∴ Volume of water raised = Volume of 150 marbles (1/2)
So, π × 72 × h = 200π(0.7)3 ⇒ h = [latex]\frac { 200\times 7\times 7\times 7 }{ 7\times 7\times 10\times 10\times 10 } [/latex]
⇒ h = 1.4 cm (1)
OR
Let the radius ofhemisphere = r
Now, volume ofhemisphere = [latex s=2]\frac { 2 }{ 3 } [/latex] πr3 (1/2)
Surface area ofhemisphere = 3πr2 (1/2)
A.T.Q, volume ofhemisphere = surface area ofhemisphere (1/2)
⇒ [latex s=2]\frac { 2 }{ 3 } [/latex] πr3 = 3πr2 ⇒r= [latex s=2]\frac { 9 }{ 2 } [/latex]units (1)

Solution 17.
Suppose the co-ordinates of vertex D are (x, y), then
Mid-point of AC = Mid-point of BD (For parallelogram ABCD) (1/2)
CBSE Sample Papers for Class 10 Maths Paper 4 img 15

Solution 18.
CBSE Sample Papers for Class 10 Maths Paper 4 img 16
OR
CBSE Sample Papers for Class 10 Maths Paper 4 img 17

Solution 19.
CBSE Sample Papers for Class 10 Maths Paper 4 img 18
CBSE Sample Papers for Class 10 Maths Paper 4 img 19
OR
CBSE Sample Papers for Class 10 Maths Paper 4 img 20

Solution 20.
Let OP meet the circle at Q. Join AQ. As OP is equal to the diameter of the circle and OQ is radius, so OQ = QP i.e. Q is mid-point of OP. Since PA is tangent to the circle at A and OA is its radius, OA ⊥L AP i.e. ∠OAP = 90°.
In right triangle OAP, Q is mid-point of hypotenuse,
CBSE Sample Papers for Class 10 Maths Paper 4 img 21
∴AQ = OQ = QP
Also OA = OQ (radii of same circle)
⇒ OA=OQ = AQ ⇒ ∆OAQ is equilateral
⇒ ∠AOQ = 60° ⇒ ∠AOP = 60°. (1)
In ∆OAP, ∠OPA + ∠AOP + ∠OAP =180°
⇒ ∠OPA+60°+ 90° = 180°
⇒ ∠OPA= 30°
⇒ ∠APB = 60° (∴OP is bisector of ZAPB) (1)
Also PA = PB ⇒ ∠PAB = ∠PBA.
In ∆PAB, ∠PAB + ∠PBA+ ∠APB = 180°
⇒ 2 ∠PAB+ 60° =180°
⇒ ∠PAB=60°
⇒ Triangle ABP is equilateral. (1)

Solution 21.
∴Letx2 = u, y2 = v
⇒ 2u + 3v=35 and [latex]\frac { u }{ 2 } +\frac { v }{ 3 } [/latex] = 5 (1/2)
⇒ 2u + 3v = 35 …(i)
⇒ 3u + 2v = 30 …(ii) (1/2)
Multiply (i) by 3 and (ii) by 2 and subtracting (ii) from (i), we have
⇒ 6u – 6u + 9v – 4v= 105 – 60
⇒ 5v = 45 ⇒v = 9
Substituting v = 9 in (1), we get 2u + 2 7 = 3 5
2u = 8 => u = 4 ⇒x2 = 4, y2 = 9
∴ x = ± 2,y = ± 3 is the required solution. (1)

Solution 22.
CBSE Sample Papers for Class 10 Maths Paper 4 img 22
OR
CBSE Sample Papers for Class 10 Maths Paper 4 img 23

Section-D

Solution 23.
Suppose AB be a tower and there are two points C and D at the distances of 4 m and 16 m from the foot of the tower respectively
CBSE Sample Papers for Class 10 Maths Paper 4 img 24
Since, the angles of elevation from C and D of the top of the tower are complementary.
So,e,+e2 = 90° …(i) (1/2)
Let the height of the tower be h.
Then, from equation (i), tan (θ1 + θ2) = tan 90° (1/2)
⇒ [latex]\frac { \tan { { \theta }_{ 1 } } +\tan { { \theta }_{ 2 } } }{ 1-\tan { { \theta }_{ 1 } } \tan { { \theta }_{ 2 } } } =\frac { 1 }{ 0 } [/latex]
⇒ 1- tan θ1 tan θ2 =0 ⇒ tan θ1 tan θ2 = 1 (1)
⇒ [latex]\frac { h }{ 4 } \times \frac { h }{ 16 } [/latex] = 1 ⇒ h<2 = 64 ⇒ h = 8 m (∵Height cannot be negative) (1)
Hence, the height of the tower is 8 m.
OR
CBSE Sample Papers for Class 10 Maths Paper 4 img 25

Solution 24.
CBSE Sample Papers for Class 10 Maths Paper 4 img 26

Solution 25.
CBSE Sample Papers for Class 10 Maths Paper 4 img 27
CBSE Sample Papers for Class 10 Maths Paper 4 img 28
OR
CBSE Sample Papers for Class 10 Maths Paper 4 img 29
CBSE Sample Papers for Class 10 Maths Paper 4 img 30

Solution 26.
CBSE Sample Papers for Class 10 Maths Paper 4 img 31

Solution 27.
CBSE Sample Papers for Class 10 Maths Paper 4 img 32
(i) Draw a line segment 4 cm.
(ii) Take a point P outside the circle and draw a secant PAB, intersecting the circle at A and B.
(iii) Produce AP to C such that AP = CP.
(iv) Draw a semi-circle with CB as diameter.
(v) Draw PD⊥L CB, intersecting the semi-circle at D.
(vi) With P as centre and PD as radius draw arcs to intersect the given circle at T and T’.
(vii) Join PTand PT’. Then, PTand PT’ are the required tangents.

Solution 28.
First convert the given frequency distribution table to More Than Type frequency distribution table.
CBSE Sample Papers for Class 10 Maths Paper 4 img 33
Now mark the lower limits along X-axis and cumulative frequencies along F-axis, and plot the points (400,230), (450,210), (500,175), (550,135), (600,103), (650,79), (700,52), (750,34). Join the points listed above by smooth free hand curve to obtain the more than type ogive.
CBSE Sample Papers for Class 10 Maths Paper 4 img 34

Solution 29.
The equation (1 + m2) x2 + 2mcx + c2 – a2 = 0
For coincident (Repeated roots) D = 0 (1/2)
⇒ (2mc)2 -4(1+ m2) (c2 – a2) = 0 (1/2)
⇒ 4m2c2 – 4(c2 – a2 + m2c2 – m2a2) = 0 (1/2)
⇒ m2c2 – c2 + a2 – m2c2 + m2a2 = 0 (1/2)
⇒ m2a2 – c2 + a2 = 0 (1/2)
⇒ m2a2 + a2 = c2 ⇒ a2 (1 +m2) = c2 (1)
⇒ c = ±a[latex]\sqrt { 1+{ m }^{ 2 } } [/latex] Hence proved. (1/2)
OR
Put x = 4, we get 3(4)2 – 2m (4) + 2n = 0 (1/2)
⇒ 48-8m + 2n = 0 =>2n-8m = -48 ⇒ n-4m = -24 ….(i) (1)
Put x = -5, we get 3 (-5)2 – 2m (-5) + 2n = 0 (1/2)
⇒ 75 + 10m + 2n = 0 ⇒2n + 10m=-75 ….(ii) (1)
Solving (i) and (ii) we get, m = – [latex s=2]\frac { 3 }{ 2 } [/latex]and n = -30 (1)

Solution 30.
Let (a-3d),(a-d),(a + d),(a + 3d) are the four numbers
∴ Sum = 50
⇒ (a-3d) + (a-d) + (a + d) + (a-3d) = 50
⇒ a= [latex s=2]\frac { 25 }{ 2 } [/latex] (1)
also, (a + 3d) = 4(a-3d) (1)
⇒ 5 d=a
⇒ d = [latex s=2]\frac {5 }{ 2 } [/latex] (1/2)
5,10, 15 and 20 are the required numbers ofA.P. (1)

We hope the CBSE Sample Papers for Class 10 Maths paper 4 help you. If you have any query regarding CBSE Sample Papers for Class 10 Maths paper 4, drop a comment below and we will get back to you at the earliest.