UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles

UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles (रेखाएँ और कोण)

These Solutions are part of UP Board Solutions for Class 9 Maths. Here we have given UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles (रेखाएँ और कोण).

प्रश्नावलीं 6.1

प्रश्न 1.
दी गई आकृति में रेखाएँ AB और CD बिन्दु O पर प्रतिच्छेद करती हैं। यदि ∠AOC + ∠BOE = 70° है और ∠BOD = 40° है तो ∠BOE और प्रतिवर्ती ∠COE ज्ञात कीजिए।
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-1
हल :
रेखाएँ AB तथा CD बिन्दु O पर प्रतिच्छेद करती हैं।
∠AOC = ∠BOD (शीर्षाभिमुख कोण)
दिया है :
∠BOD = 40°
∠AOC = 40° …(1)
यह भी ज्ञात है कि ∠AOC + ∠BOE = 70°
∠BOE = 70° – ∠AOC
∠BOE = 70° – 40°
∠BOE = 30°
AB एक ऋजु रेखा है और उस पर स्थित बिन्दु O से OC तथा OE मिलती हैं।
∠AOC + ∠COE + ∠BOE = 180°
40° + ∠COE + 30° = 180°
∠COE = 180° – 40° – 30°
∠COE = 110°
तब प्रतिवर्ती ∠COE = 360° – 110° = 250°
अतः ∠BOE = 30° तथा प्रतिवर्ती ∠COE = 250°

Reference Angle Calculator is a free online tool that displays the reference angle for the given angle and its position.

प्रश्न 2.
दी गई आकृति में रेखाएँ XY और MN बिन्दु0 पर प्रतिच्छेद करती हैं। यदि ∠POY = 90° और d : b = 2 : 3 हो तो c ज्ञात कीजिए।
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-2
हल :
XY एक ऋजु रेखा है और ∠POY = 90°
∠POX + ∠POY = 180° (रेखीय युग्म)
परन्तु ∠POY = 90°
घटाने पर, ∠POX = 90°
∠POM + ∠MOX = a + b = 90° …(1)
दिया है :
a : b = 2 : 3
⇒ [latex]\frac { a }{ b }[/latex] = [latex]\frac { 2 }{ 3 }[/latex]
⇒ 2b = 3a
⇒ b = [latex]\frac { 3 }{ 2 }[/latex] a
समीकरण (1) से,
a + b = 90°
⇒ a + [latex]\frac { 3 }{ 2 }[/latex] a = 90° (b = [latex]\frac { 3 }{ 2 }[/latex] a)
⇒ [latex]\frac { 2a + 3a }{ 2 }[/latex] = 90°
⇒ 5a = 180°
⇒ a = 36° ……(2)
ऋजु रेखाएँ XY और MN बिन्दु O पर प्रतिच्छेद करती हैं।
∠XON = ∠YOM (शीर्षाभिमुख कोण)
∠XON = ∠MOP + ∠POY (आकृति से)
c = 2 + 90°
c = 36° + 90° = 126°
अतः c = 126°

UP Board Solutions

प्रश्न 3.
दी गई आकृति में, यदि ∠PQR = ∠PRQ है तो सिद्ध कीजिए कि ∠PQS = ∠PRT है।
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-3
हल :
दी गई आकृति में SR एक ऋजु रेखा है और उसके बिन्दु Q पर रेखा PQ मिलती है।
∠PQS तथा ∠PQR एक रैखिक युग्म के कोण हैं।
∠PQS + ∠PQR = 180° …..(1)
पुनः QT एक ऋजु रेखा है जिसके बिन्दु R पर रेखा PR मिलती है।
अतः ∠PRT और ∠PRQ भी एक रैखिक युग्म के कोण हैं।
∠PRQ + ∠PRT = 180° ………(2)
समीकरण (1) व समीकरण (2) से,
∠PQS + ∠PQR = ∠PRQ + ∠PRT ……(3)
परन्तु दिया है कि ∠PQR = ∠PRQ ………(4)
तब समीकरण (3) में से समीकरण (4) को घटाने पर,
∠PQS = ∠PRT
Proved.

प्रश्न 4.
दी गई आकृति में यदि x + y = w + z है तो सिद्ध कीजिए कि AOB एक ऋजु रेखा है।
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-4
हल :
∠x, ∠y, ∠w व ∠z एक ही बिन्दु O पर बने हैं।
x + y + w + z = 360° …….(1)
परन्तु दिया है कि x + y = w + z
x + y – w – z = 0 ……..(2)
समीकरण (1) व समीकरण (2) को जोड़ने पर,
2x + 2y = 360°
⇒ x + y = 180° …(3)
समीकरण (3) से ∠x व ∠y दो आसन्न कोण हैं जिनका योग 180° है तथा रेखा OC दोनों कोणों की उभयनिष्ठ रेखा है, तब इन कोणों की शेष भुजाएँ AO तथा OB एक सरल रेखा बनाएँगी।
अत: AOB एक ऋजु रेखा है।
Proved.

UP Board Solutions

प्रश्न 5.
दी गई आकृति में, POQ एक रेखा है। किरण OR रेखा PQ पर लम्ब है। किरणों OP और OR के बीच में Os एक अन्य किरण है। सिद्ध कीजिए :
∠ROS = [latex]\frac { 1 }{ 2 }[/latex] (∠QOS – ∠POS)
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-5
हल :
POQ एक ऋजु रेखा है और किरण OR, रेखा PQ पर लम्ब है।
∠QOR = 90° और ∠POR = 90°
∠POR = 90°
∠POS + ∠ROS = 90° (आकृति से)
∠POS = 90° – ∠ROS …(1)
∠QOS = ∠ROS + ∠QOR (आकृति से)
∠QOS = ∠ROS + 90° …..(2)
समीकरण (2) में से समीकरण (1) को घटाने पर,
∠QOS – ∠POS = (∠ROS + 90°) – (90° – ∠ROS)
∠QOS – ∠POS = ∠ROS + 90° – 90° + ∠ROS
(∠QOS – ∠POS) = 2 ∠ROS
[latex]\frac { 1 }{ 2 }[/latex] (∠QOS – ∠POS) = ∠ROS
अतः ∠ROS = [latex]\frac { 1 }{ 2 }[/latex] (∠QOS – ∠POS)
Proved.

प्रश्न 6.
यह दिया है कि ∠XYZ = 64° है और XY को बिन्दु P तक बढ़ाया गया है। दी। हुई सूचना से एक आकृति खींचिए। यदि किरण YQ, ∠ZYP को समद्विभाजित करती है तो ∠XYQ और प्रतिवर्ती ∠QYP के मान ज्ञात कीजिए।
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-6
हल :
दी गई सूचना से आकृति खींचना :
(i) एक किरण YZ खींची।
(ii) किरण YZ के बिन्दु Y पर ∠XYZ = 64° खींचा।
(iii) XY को बिन्दु P तक बढ़ाकर रेखा XYP खींची।
तत्पश्चात् दूसरी आकृति बनाकर बिन्दु Y से किरण YQ इस प्रकार खींची कि किरण YQ, ∠ZYP को समद्विभाजित करे।
निर्दिष्ट कोणों की माप की गणना :
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-7
(i) ∠XYQ
∠XYZ की कोण-रेखा XY को बिन्दु P तक बढ़ाया गया है।
XYP एक ऋजु रेखा है।
तब, ∠XYZ और ∠ZYP कोणों का युग्म एक रैखिक युग्म है।
∠XYZ + ∠ZYP = 180°
64° + ∠ZYP = 180° (दिया है ∠XYZ = 64°)
∠ZYP = 180° – 64° = 116°
किरण YQ, ∠ZYP को समद्विभाजित करती है।
∠ZYQ = ∠QYP और ∠ZYQ + ∠QYP = 116°
हल करने पर, ∠ZYQ = 58° और ∠QYP = 58° …(1)
अब चूँकि ∠XYQ = ∠XYZ + ∠ZYQ (आकृति से)
= 64° + 58° = 122°
अतः ∠XYQ = 122°
(ii) प्रतिवर्ती ∠QYP समीकरण (1) से,
∠QYP = 58° प्रतिवर्ती ∠QYP = 360° – 58° = 302°
अत: प्रतिवर्ती ∠QYP = 302°

UP Board Solutions

प्रश्नावली 6.2

प्रश्न 1.
दी गई आकृति में, और y के मान ज्ञात कीजिए और फिर दर्शाइए कि AB || CD है।
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-8
हल :
दी गई आकृति में ऋजु रेखा AB पर एक तिर्यक (तिरछी) रेखा 50° के कोण पर झुकी है। तब, यह 50° का कोण और ∠x एक रैखिक (कोण) युग्म बनाते हैं।
50° + ∠x = 180°
∠x = 180° – 50° = 130°
पुनः ऋजु रेखा CD को एक अन्य तिर्यक ऋजु रेखा काटती है।
∠y और चित्र में बना 130° के कोण शीर्षाभिमुख कोण युग्म के कोण हैं जिससे
∠y = 130°
∠x और ∠y एकान्तर अन्त:कोण हैं और परस्पर बराबर भी हैं।
यह समान्तर रेखाओं को तिर्यक रेखा के काटने से बनेंगे
अत: ऋजु रेखा AB || CD

प्रश्न 2.
दी गई आकृति में, यदि AB || CD; CD || EF और y : 2 = 3: 7 है। तो x का मान ज्ञात कीजिए।
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-9
हल :
दी गई आकृति में AB || CD और CD || EF
AB || EF
अब चूँकि AB || EF को एक तिर्यक ऋजु रेखा l काटती है जिससे एकान्तर कोण ∠x और ∠y बनते हैं।
∠x = ∠y ……(1)
AB || CD और एक तिर्यक रेखा l इन्हें काटती है जिससे ∠x और ∠y, तिर्यक रेखा l के एक ही ओर बने अन्त:कोण हैं।
∠x + ∠y = 180° …(2)
तब समीकरण (1) व समीकरण (2) से,
∠y + ∠z = 180° ……..(3)
y : 2 = 3 : 7 तब माना y = 3k तथा z = 7k
y और z के ये मान समीकरण (3) में रखने पर,
3k + 7k = 180°
⇒ 10k = 180°
⇒ k = 18°
z = 7k = 7 x 18° = 126°
समीकरण (1) से,
∠x = ∠z और z = 126° .
∠x = 126°
अतः x = 126°

प्रश्न 3.
दी गई आकृति में, यदि AB || CD, EF ⊥ CD और ∠GED = 126° हो तो ∠AGE, ∠GEF और ∠FGE ज्ञात कीजिए।
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-10
हल :
AB || CD और GE एक तिर्यक रेखा है।
∠AGE = ∠GED (एकान्तर कोण)
⇒ ∠AGE = 126° (∠GED = 126°)
⇒ ∠GED = 126°
⇒ ∠GEF + ∠FED = 126°
⇒ ∠GEF + 90° = 126° (∠ZFED = 90°)
⇒ ∠GEF = 126° – 90° = 36°
⇒ ∠GEF = 36°
पुनः AB एक ऋजु रेखा है और GE, उससे बिन्दु G पर मिलती है।
∠AGE और ∠FGE एक रैखिक कोण-युग्म बनाते हैं।
∠AGE + ∠FGE = 180°
⇒ 126° + ∠FGE = 180° (∠AGE = 126° अभी ऊपर ज्ञात किया है।)
⇒ ∠FGE = 180° – 126°
⇒ ∠FGE = 54°
अतः ∠AGE = 126°, ∠GEF = 36° और ∠FGE = 54°

UP Board Solutions

प्रश्न 4.
दी गई आकृति में, यदि PQ || ST, ∠PQR = 110° और ∠RST = 130° हो तो ∠QRS ज्ञात कीजिए।
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-11
हल :
दिया है : दी गई आकृति में PQ || ST , ∠PQR = 110° तथा ∠RST = 130°
ज्ञात करना है : ∠QRS की माप।
रचना : बिन्दु R से PQ के समान्तर एक ऋजु रेखा XY खींची।
विश्लेषण : PQ || XY (रचना से) और QR तिर्यक रेखा है जो इन्हें Q तथा R पर काटती है।
∠PQR और ∠QRX, QR के एक ही ओर बने अन्त: कोण हैं।
∠PQR + ∠QRX = 180°
⇒ ∠QRX = 180° – ∠PQR = 180° – 110° (ZPQR = 110°)
⇒ ∠QRX = 70°
अब :: PQ || XY रचना से और PQ || ST दिया है।
ST || XY
ST || XY और RS तिर्यक रेखा है।
∠SRY और ∠RST तिर्यक रेखा के एक ही ओर बने अन्त: कोण हैं।
∠SRY + ∠RST = 180°
⇒ ∠SRY + 130° = 180° (∠RST = 130°)
⇒ ∠SRY = 180° – 130°
⇒ ∠SRY = 50°
पुनः ∠QRX, ∠QRS और ∠SRY एक ही ऋजु रेखा के बिन्दु R पर रेखा XY के एक ही ओर बने हैं।
∠QRX + ∠QRS + ∠SRY = 180° (आकृति से)
⇒ 70° + ∠QRS + 50° = 180°
⇒ ∠QRS = 180° – 70° – 50° = 60°
अतः ∠QRS = 60°

प्रश्न 5.
दी गई आकृति में, यदि AB || CD, ∠APQ = 50° और ∠PRD = 127° है तो x और y ज्ञात कीजिए।
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-12
हल :
दिया है : ऋजु रेखा AB || CD, ∠APQ = 50° और ∠PRD = 127°
ज्ञात करना है : x तथा y
विश्लेषण : AB|| CD और PQ एक तिर्यक रेखा है।
∠APQ = ∠PQR (एकान्तर कोण युग्म)
50° = x
x = 50°
पुनः AB || CD और PR एक तिर्यक रेखा है।
∠APR = ∠PRD (एकान्तर कोण युग्म)
∠APQ + ∠QPR = ∠PRD (∠APR = ∠APQ + ∠QPR, चित्र से)
50° + y = 127°
y = 127° – 50° = 77°
अतः x = 50° और y = 77°

प्रश्न 6.
दी गई आकृति में P और RS दो दर्पण हैं जो एक-दूसरे के समान्तर रखे गए हैं। एक आपतन किरण (Incident Ray) AB, दर्पण PQ से B पर टकराती है और परावर्तित किरण (Reflected Ray) पथ BC पर चलकर दर्पण RS से C पर टकराती है तथा पुनः CD के अनुदिश परावर्तित हो जाती है। सिद्ध कीजिए कि AB || CD है।
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-13
हल :
दिया है : दर्पण PQ || दर्पण RS तथा AB और BC दर्पण PQ के लिए क्रमश: आपतित और परावर्तित किरणें हैं। दर्पण RS के लिए आपतित किरण BC तथा परावर्तित किरण CD है।
BP’ दर्पण PQ के बिन्दु B पर तथा CQ’ दर्पण RS के बिन्दु C पर अभिलम्ब हैं।
सिद्ध करना है : AB || CD
उपपत्ति : BP’, बिन्दु B पर अभिलम्ब है;
अतः BP’ ⊥ PQ
और CQ’, बिन्दु C पर अभिलम्ब है;
अतः CQ ⊥ RS
PQ || RS
उक्त तीनों तथ्यों से BP’ || CQ’ और BC तिर्यक रेखा है।
∠P’BC = ∠Q’CB (एकान्तर कोण)
∠r1 = ∠i2 …..(1)
परावर्तन के नियमों से,
∠i1 = ∠r1 …..(2)
∠i2 = ∠r2 ……(3)
समीकरण (1), (2) व (3) से,
∠i1 = ∠r2
समीकरण (1) व समीकरण (4) को जोड़ने पर,
∠(i1 + r1) = ∠(i2 + r2)
∠ABC = ∠BCD
परन्तु ये AB तथा CD को BC द्वारा प्रतिच्छेद करने से निर्मित समान एकान्तर कोण हैं।
अत: AB || CD
Proved.

प्रश्नावली 6.3

प्रश्न 1.
दी गई आकृति में ΔPQR की भुजाओं QP और RQ को क्रमशः बिन्दुओं S और T तक बढ़ाया गया है। यदि ∠SPR = 135° है और ∠PQT = 110° है तो ∠PRQ ज्ञात कीजिए।
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-14
हल :
ΔPQR की भुजा QP को बिन्दु S तक बढ़ाया गया है जिससे
बहिष्कोण ∠SPR = ∠PQR + ∠PRQ . (किसी त्रिभुज का एक बहिष्कोण उसके अन्तः अभिमुख कोणों के योगफल के बराबर होता है।)
परन्तु दिया है :
∠SPR = 135°
∠SPR = 135°
∠PQR + ∠PRQ = 135° …….(1)
पुनः ΔPQR की भुजा RQ को बिन्दु T तक बढ़ाया गया है जिससे
बहिष्कोण ∠PQT = ∠QPR + ∠PRQ
(किसी त्रिभुज का एक बहिष्कोण उसके अन्तः अभिमुख कोणों के योगफल के बराबर होता है।)
परन्तु ज्ञात है कि
∠PQT = 110°
∠QPR + ∠PRQ = 110° …….(2)
समीकरण (1) व समीकरण (2) को जोड़ने पर,
∠PQR + ∠QPR + ∠PRQ + ∠PRQ = 245° …(3)
परन्तु ΔPQR में,
∠PQR + ∠QPR +∠PRQ = 180° (त्रिभुज के अन्त:कोणों का योग 180° होता है।)
समीकरण (3) से (4) को घटाने पर,
∠PRQ = 65°
अतः ∠PRQ = 65°

UP Board Solutions

प्रश्न 2.
दी गई आकृति में, ∠X = 62° और ∠XYZ = 54° है। यदि YO और ZO क्रमशः ΔXYZ के ∠XYZ और ∠XZY के समद्विभाजक हैं तो ∠OZY और ∠YOZ ज्ञात कीजिए।
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-15
हल :
ΔXYZ में,
∠X + ∠XYZ + ∠XZY = 180° ( त्रिभुज के अन्त:कोणों का योग 180° होता है)
62° + 54° + ∠XZY = 180°
⇒ ∠XZY = 180° – (62° + 54°) = 180° – 116°
⇒ ∠XZY = 64°
YO, ∠XYZ का और ZO, ∠XZY का समद्विभाजक है।
∠OYZ = [latex]\frac { 1 }{ 2 }[/latex] ∠XYZ और ∠OZY = [latex]\frac { 1 }{ 2 }[/latex] ∠XZY
⇒ ∠OYZ = [latex]\frac { 1 }{ 2 }[/latex] x 54° और ∠OZY = [latex]\frac { 1 }{ 2 }[/latex] x 64°
⇒ ∠OYZ = 27° और ∠OZY = 32°
तब, ΔOYZ में, ∠OYZ + ∠OZY + ∠YOZ = 180°
(त्रिभुज के अन्त:कोणों का योग 180° होता है।)
27° + 32° + ∠YOZ = 180°
⇒ ∠YOZ = 180° – (27° + 32°) = 180° – 59°
⇒ ∠YOZ = 121°
अतः ∠OZY = 32°
तथा ∠YOZ = 121°

प्रश्न 3.
दी गई आकृति में, यदि AB || DE, ∠BAC = 35° और ∠CDE = 53° है तो ∠DCE ज्ञात कीजिए।
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-16
हल :
AB || DE और ऋजु रेखा AE इन्हें काटती है।
तब, ∠BAE = ∠AED (एकान्तर कोण)
परन्तु ∠BAE = ∠BAC और ∠AED = ∠CED
∠BAC = ∠CED
⇒ 35° = ∠CED
⇒ ∠CED = 35°
तब, ΔCDE में,
∠CDE + ∠CED + ∠DCE = 180° (त्रिभुज के अन्त:कोणों का योग 180° होता है।)
⇒ 53° + 35° + ∠DCE = 180°
⇒ ∠DCE = 180° – (53° + 35°) = 180° – 88° = 92°
अतः ∠DCE = 92°

UP Board Solutions

प्रश्न 4.
दी गई आकृति में यदि रेखाएँ PQ और RS बिन्दु T पर इस प्रकार प्रतिच्छेद करती हैं कि ∠PRT = 40°, ∠RPT = 95° और ∠TSQ = 75° है तो ∠SQT ज्ञात कीजिए।
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-17
हल :
ΔPRT में,
∠PRT + ∠RPT + ∠PTR = 180° (त्रिभुज के अन्त:कोणों का योग 180° होता है।)
⇒ 40° + 95° + ∠PTR = 180°
⇒ ∠PTR = 180° – (95° + 40°) = 180° – 135°
⇒ ∠PTR = 45°
ऋजु रेखाएँ PQ और RS परस्पर बिन्दु T पर प्रतिच्छेद करती हैं।
∠QTS = ∠PTR (शीर्षाभिमुख कोण)
∠QTS = 45°
∠PTR = 45°
अब, ΔQTS में, ∠QTS + ∠TSQ + ∠SQT = 180°
(त्रिभुज के अन्त:कोणों का योग 180° होता है।)
45° + 75° + ∠SQT = 180°
⇒ ∠SQT = 180° – (45° + 75°) = 180° – 120° = 60°
अतः
∠SQT = 60°

प्रश्न 5.
दी गई आकृति में, यदि PQ ⊥ PS, PQ || SR, ∠SQR = 28° और ∠QRT = 65° है तो x और y का मान ज्ञात कीजिए।
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-18
हल :
ΔQRS में ∠QRT बहिष्कोण है।
∠SQR + ∠QSR = ∠QRT (किसी त्रिभुज का एक बहिष्कोण उसके अन्तः अभिमुख कोणों के योगफल के बराबर होता है।)
28° + ∠QSR = 65°
⇒ ∠QSR = 65° – 28° = 37°
अब, PQ || SR और QS एक तिर्यक प्रतिच्छेदी रेखा है,
∠PQS = ∠QSR (एकान्तर कोण)
x = 37°
PQ ⊥ PS
∠P = 90°
ΔPQS में ∠P + ∠PQS + ∠PSQ = 180° (त्रिभुज के अन्त: कोणों का योग 180° होता है।)
90° + x + y = 180°
⇒ x + y = 90°
⇒ 37° + y = 90°
⇒ y = 90° – 37° = 53°
x = 37° तथा y = 53°

UP Board Solutions

प्रश्न 6.
दी गई आकृति में ΔPQR की भुजा QR को बिन्दु S तक बढ़ाया P गया है। यदि ∠PQR और ∠PRS के समद्विभाजक बिन्दु T पर मिलते हैं तो सिद्ध कीजिए कि ∠QTR = [latex]\frac { 1 }{ 2 }[/latex] ∠QPR
UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles img-19
हल :
ΔPQR में,
∠PQR + ∠PRQ + ∠QPR = 180°
तथा ΔTQR में,
∠TQR + ∠QRT + ∠QTR = 180° (त्रिभुज के अन्त:कोणों का योग 180° होता है।)
∠TQR + ∠QRT + ∠QTR = ∠PQR + ∠PRQ + ∠QPR
∠TQR + (∠PRQ + ∠PRT) + ∠QTR = ∠PQR + ∠PRQ + ∠QPR [∴ ∠QRT = ∠PRQ + ∠PRT]
∠TQR + ∠PRQ + ∠PRT + ∠QTR = ∠PQR + ∠PRQ + ∠QPR
∠TQR + ∠PRT + ∠QTR = ∠PQR + ∠QPR …….(1)
QT, ∠PQR का समद्विभाजक है।
∠TQR = [latex]\frac { 1 }{ 2 }[/latex] ∠PQR ⇒ ∠PQR = 2 ∠TQR ……..(2)
समीकरण (1) वे समीकरण (2) से,
∠TQR + ∠PRT + ∠QTR = 2 ∠TQR + ∠QPR
∠PRT + ∠QTR = ∠TQR + ∠QPR
RT, ∠PRS का समद्विभाजक है।
∠PRT = [latex]\frac { 1 }{ 2 }[/latex] ∠PRS
और ∠PRS, ΔPQR का बहिष्कोण है।
∠PRS = ∠PQR + ∠QPR (किसी त्रिभुज का एक बहिष्कोण उसके अन्तः अभिमुख कोणों के योगफल के बराबर होता है।)
∠PRS = 2 ∠TQR + ∠QPR [समीकरण (2) से] …(4)
∠PRT = [latex]\frac { 1 }{ 2 }[/latex] ∠PRS = [latex]\frac { 1 }{ 2 }[/latex] (2 ∠TQR + ∠QPR) [समीकरण (4) से
∠PRT = ∠TQR + [latex]\frac { 1 }{ 2 }[/latex] ∠QPR …(5)
समीकरण (3) में से समीकरण (5) को घटाने पर,
∠QTR = ∠QPR – [latex]\frac { 1 }{ 2 }[/latex] ∠QPR
∠QTR = [latex]\frac { 1 }{ 2 }[/latex] ∠QPR
Proved.

We hope the UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles (रेखाएँ और कोण) help you. If you have any query regarding UP Board Solutions for Class 9 Maths Chapter 6 Lines and Angles (रेखाएँ और कोण), drop a comment below and we will get back to you at the earliest.

UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections

UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections (शंकु परिच्छेद)

These Solutions are part of UP Board Solutions for Class 11 Maths. Here we have given UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections (शंकु परिच्छेद).

प्रश्नावली 11.1

निम्नलिखित प्रश्न 1 से 5 तक प्रत्येक में वृत्त का समीकरण ज्ञात कीजिए:

प्रश्न 1.
केंद्र (0, 2) और त्रिज्या 2 इकाई।
हल:
यहाँ h = 0, k = 2 तथा r = 2 रखने पर,
वृत्त का समीकरण, (x – 0)² + (y – 2)² = 2²
x² + y² – 4y + 4 = 4
अतः वृत्त का अभीष्ट समीकरण, x² + y² – 4y = 0.

प्रश्न 2.
केंद्र (-2, 3) और त्रिज्या 4 इकाई।
हल:
वृत्त का समीकरण (x + 2)² + (y – 3)² = 4²
या (x²+ 4x + 4) + (y² – 6y + 9) = 16
या x² + y² + 4x – 6y – 3 = 0.

UP Board Solutions

प्रश्न 3.
केंद्र ([latex]\frac { 1 }{ 2 }[/latex] , [latex]\frac { 1 }{ 4 }[/latex]) और त्रिज्या [latex]\frac { 1 }{ 12 }[/latex] इकाई।
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 8

प्रश्न 4.
केंद्र (1, 1) और त्रिज्या √2 इकाई।
हल:
यहाँ h = 1, k = 1 तथा r = √2 हों, तब
वृत्ते का समीकरण,
(x – 1)² + (y – 1)² = (√2)²
(x² – 2x + 1) + (y² – 2y + 1) = 2
x² + y² – 2x – 2y = 0.

प्रश्न 5.
केंद्र (-a, -b) और त्रिज्या √(a² – b²) इकाई।
हल:
वृत्त का समीकरण,
(x + a)² + (y + b)² = {√(a² – b²)}²
x² + 2ax + a² + y² + 2by + b² = a² – b²
x² + y² + 2ax + 2by + 2b² = 0.

UP Board Solutions

निम्नलिखित प्रश्न 6 से 9 तक में प्रत्येक वृत्त का केन्द्र और त्रिज्या ज्ञात कीजिए:

प्रश्न 6.
(x + 5)² + (y – 3)² = 36.
हल:
वृत्त (x + 5)² + (y – 3)² = 36 की (x – h)² + (y – k)² = r² से तुलना करने पर,
– h = 5, -k = – 3, r² = 36
h = -5, k = 3, r = 6
केन्द्र (-5, 3), त्रिज्या = 6.

प्रश्न 7.
x² + y² – 4x – 8y – 45 = 0
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.1 7

UP Board Solutions

प्रश्न 8.
x² + y² – 8x + 10y – 12 = 0.
हल:
(x² – 8x) + (y² + 10y) = 12
या (x² – 8x + 16) + (y² + 10y + 25) = 12 + 16 + 25
(x – 4)² + (y + 5)² = 53
केन्द्र (4, -5), त्रिज्या = √53.

प्रश्न 9.
2x² + 2y² – x = 0.
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.1 9

प्रश्न 10.
बिन्दुओं (4, 1) और (6, 5) से जाने वाले वृत्त का समीकरण ज्ञात कीजिए जिसका केन्द्र रेखा 4x + y = 16 पर स्थित है।
हल:
वृत्त का व्यापक समीकरण
x² + y² + 2gx + 2fy + c = 0
बिन्दु (4, 1) इस पर स्थित है।
16 + 1 + 8g + 2f + c = 0
8g + 2f + c = – 17 ……(1)
बिन्दु (6, 5) वृत्त पर स्थित है।
36 + 25 + 12g + 10f + c = 0
12g + 10f + c = -61 ……..(2)
केंद्र (-g, -f) रेखा 4x + y = 16 पर स्थित है।
-4g – f = 16.
4g + f = -16 ………(3)
समीकरण (1) को (2) में से घटाने पर
4g + 8f = -44
समीकरण (3) को (4) में से घटाने पर
7f = -44 + 16 = – 28
f = -4
समीकरण (3) में का मान रखने पर
4g – 4 = -16 या 4g = -12
g = -3
f और g का मान समी (1) में रखने पर
– 24 – 8 + c = – 17
c = 32 – 17 = 15
अत: वृत्त का समीकरण
x² + y² – 6x – 8y + 15 = 0.

UP Board Solutions

प्रश्न 11.
बिन्दुओं (2, 3) और (-1, 1) से जाने वाले वृत्त का समीकरण ज्ञात कीजिए जिसका केंद्र रेखा x – 3y – 11 = 0 पर स्थित है।
हल:
मान लीजिए वृत्त का समीकरण x² + y² + 2gx + 2fy + c = 0 …..(1)
इस पर बिन्दु (2, 3) स्थित है।
4 + 9 + 4g + 6f + c = 0
4g + 6f + c = -13 …..(2)
इसी प्रकार (-1, 1) भी वृत्त (1) पर स्थित है।
1 + 1 – 2g + 2 + c = 0
-2g + 2f + c = -2 …….(3)
केंद्र (-g, -f) रेखा x – 3y – 11 = 0 पर स्थित है।
-g + 3f – 11 = 0
या -g + 3f = 11 ……(4)
समीकरण (2) में से (3) को घटाने पर
6g + 4f = -11 ……..(5)
समी. (4) को 6 से गुणा करने पर,
– 6g + 18f = 66 ……(6)
समी. (5) और समी (6) को जोड़ने पर,
22f = 55
⇒ f = [latex]\frac { 5 }{ 2 }[/latex]
f का मान समी (5) में रखने पर,
6g + 10 = -11
6g = -21
g = [latex]\frac { -7 }{ 2 }[/latex]
g और f का मान समी (3) में रखने पर,
7 + 5 + c = -2 या c = – 14
g, और c के मान समीकरण (1) में रखने पर,
x² + y² – 7x + 5y – 14 = 0
यह वृत्त का वांछित समीकरण है।

UP Board Solutions

प्रश्न 12.
त्रिज्या 5 के उस वृत्त का समीकरण ज्ञात कीजिए जिसका केंद x-अक्ष पर हो और जो बिन्दु (2, 3) से जाता है।
हल:
केंद्र x-अक्ष पर है। मान लीजिए ऐसा बिन्दु (p, 0) है। त्रिज्या 5 वाले वृत्त का समीकरण
(x – p)² + (y – 0)² = 25
बिन्दु (2, 3) इस वृत्त से होकर जाता है।
(2 – p)² + 9 = 25
(2 – p)² = 25 – 9 = 16
2 – p = ±4
+ve चिन्ह लेने पर, 2 – p = 4 या p = 2 – 4 = -2
-ve चिन्ह लेने पर, 2 – p = -4 या 2 = 4 + 2 = 6
जब p = -2, वृत्त का समीकरण
(x + 2)² + y = 25
x² + y² + 4x – 21 = 0
जब p = 6, वृत्त का समीकरण
(x – 6)² + y² = 25
x² + y² – 12x + 36 – 25 = 0
x² + y² – 12x + 11 = 0
वृत्त के अभीष्ट समीकरण
x² + y² + 4x – 21 = 0 और x² + y² – 12x + 11 = 0

प्रश्न 13.
(0, 0) से होकर जाने वाले वृत्त का समीकरण ज्ञात कीजिए जो निर्देशांक्षों पर a और B अंतः खण्ड बनाता है।
हल:
वृत्त मूल बिन्दु से होकर जाता है और अक्षों पर अंत:खण्ड a, b बनाता है।
OA = a, A के निर्देशांक (a, 0)
OB = b, B के निर्देशांक (0, b)
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.1 13
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.1 13.1

UP Board Solutions

प्रश्न 14.
उस वृत्त का समीकरण ज्ञात कीजिए जिसका केंद्र (2, 2) हो तथा (4, 5) से जाता है।
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.1 14

प्रश्न 15.
क्या बिन्दु (-2.5, 3.5) वृत्त x² + y² = 25 के अंदर, बाहर या वृत्त पर स्थित है।
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.1 15

UP Board Solutions

प्रश्नावली 11.2

निम्नलिखित प्रश्न 1 से 6 तक प्रत्येक में नाभि के निर्देशांक, परवलय का अक्ष, नियता का समीकरण और नाभिलंब जीवा की लंबाई ज्ञात कीजिए।

प्रश्न 1.
y² = 12x
हल:
परवलय का समीकरण, y² = 12x
y² = 4ax से तुलना करने पर।
4a = 12 या a = 3
(i) नाभि के निर्देशांक (a, 0) या (3, 0)
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.2 1
(ii) परवलय का अक्ष OX
इसका समीकरण y = 0
(iii) नियता का समीकरण : x = -a अर्थात् x = -3
(iv) नाभिलंब जीवा की लंबाई = 4a = 12.

UP Board Solutions

प्रश्न 2.
x² = 6y
हल:
परवलय का समीकरण x² = 6y
4a = 6 या a = [latex]\frac { 3 }{ 2 }[/latex]
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.2 2
इसका अक्ष y-अक्ष है जिसका
(i) समीकरण x = 0 है।
(ii) नाभि F (0, a) के निर्देशांक (0, [latex]\frac { 3 }{ 2 }[/latex]) है।
(iii) नियता y = -a का समीकरण y = [latex]\frac { -3 }{ 2 }[/latex]
(iv) नाभिलंब जीवा की लम्बाई 4a = 6.

प्रश्न 3.
y² = -8x
हल:
परवलय का समीकरण y² = -8x
4a = 8 ⇒ a = 2
(i) नाभि F(-a, 0) के निर्देशांक (-2, 0)
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.2 3
(ii) परवलय का अक्ष x-अक्ष
इसका समीकरण y = 0
(iii) नियता x = a का समीकरण x = 2.
(iv) नाभिलंब जीवा की लंबाई = 4a = 8.

UP Board Solutions

प्रश्न 4.
x² = -16y.
हल:
परवलय का समीकरण x² = -16y
4a = 16 या a = 4
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.2 4
(i) नाभि F (0, – a) के निर्देशांक (0, -4)
(ii) परवलय अक्ष का समीकरण x = 0.
(iii) नियता y = 0 का समीकरण y = 4.
(iv) नाभिलंब जीवा की लंबाई 4a = 16.

प्रश्न 5.
y² = 10x.
हल:
परवलय का समीकरण y² = 10x (आकृति प्रश्न 1 में देखें)
4a = 10 या a = [latex]\frac { 5 }{ 2 }[/latex]
(i) नाभि F (a, 0) के निर्देशांक ([latex]\frac { 5 }{ 2 }[/latex] , 0)
(ii) परवलय को अक्ष : x-अक्ष, समीकरण y = 0
(iii) नियता x = -a का समीकरण x = [latex]\frac { -5 }{ 2 }[/latex]
(iv) नाभिलंब जीवा की लंबाई 4a = 10.

प्रश्न 6.
x² = -9y.
हल:
परवलय का समीकरण x² = -9y (आकृति प्रश्न 4 में देखें)।
4a = 9 या a = [latex]\frac { 9 }{ 4 }[/latex]
(i) नाभि (0, -a) के निर्देशांक (0, [latex]\frac { -9 }{ 4 }[/latex])
(ii) परवलय का अक्ष : y-अक्ष, समीकरण x = 0
(ii) नियता y = a का समीकरण y = [latex]\frac { 9 }{ 4 }[/latex]
(iv) नाभिलंब जीवा की लंबाई 4a = 9.

UP Board Solutions

निम्नलिखित प्रश्न 7 से 12 तक प्रत्येक में परवलय का समीकरण ज्ञात कीजिए जो दिए प्रतिबंध को संतुष्ट करता है।

प्रश्न 7.
नाभि (6, 0), नियता x = – 6.
हल:
परवलंय का अक्ष : x-अक्ष, y = 0
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.2 7
शीर्ष (0, 0) है, नाभि के निर्देशांक (6, 0)
परवलय का अक्ष, धन x-अक्ष के अनुदिश है।
परवलय का समीकरण y² = 24x.

प्रश्न 8.
नाभि (0, -3), नियता y = 3.
हल:
परवलय का अक्ष y-अक्ष है।
शीर्ष (0, -3), (0, 3) का मध्य बिन्दु (0, 0) है। नाभि (0, -3) से स्पष्ट होता है कि परवलय की अक्ष OY के अँनुदिश है।
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.2 8
परवलय के समीकरण का रूप x² = -4ay
यहाँ पर a = 3, 4a = 12
परवलय का समीकरण x = -12y.

UP Board Solutions

प्रश्न 9.
शीर्ष (0, 0), नाभि (3, 0) (आकृति प्रश्न 7 की देखिए)
हल:
परवलय का अक्ष OX के अनुदिश हैं।
परवलय के समीकरण का रूप y = 4ax
नाभि (3, 0) है।
a = 3
4a = 4 x 3 = 12
परवलय का समीकरण y² = 12x.

प्रश्न 10.
शीर्ष (0, 0), नाभि (-2, 0).
हल:
परवलय का अक्ष OX’ के अनुदिश
नाभि (-2, 0) है तो a = 2
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.2 10
4a = 8
परवलय का रूप y² = -4ax
परवलय का समीकरण y² = – 8x.

प्रश्न 11.
शीर्ष (0, 0), (2, 3) से जाता है और अक्ष, x-अक्ष के अनुदिश है।
हल:
परवलय का शीर्ष (0, 0) है और अक्ष : x-अक्ष है।
परवलय के समीकरण का रूप y² = 4ax
यह बिन्दु (2, 3) से होकर जाता है।
9 = 4a x 2
या 4a = [latex]\frac { 9 }{ 2 }[/latex]
अतः परवलय का समीकरण y² = [latex]\frac { 9 }{ 2 }[/latex] x या 2y² = 9x.

प्रश्न 12.
शीर्ष (0, 0), (5, 2) से जाता है और y-अक्ष के सापेक्ष सममित है।
हल:
शीर्ष (0, 0), परवलय y-अक्ष के सापेक्ष सममित है।
समीकरण का रूप x² = 4ay है।
यह बिन्दु (5, 2) से गुजरता है।
25 = 4a x 2
4a = [latex]\frac { 25 }{ 2 }[/latex]
परवलय का समीकरण, x² = [latex]\frac { 25 }{ 2 }[/latex] y या 2x² = 25y.

UP Board Solutions

प्रश्नावली 11.3

निम्नलिखित प्रश्नों 1 से 9 तक प्रत्येक दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंदता तथा नाभिलंबे जीवा की लम्बाई ज्ञात कीजिए।

UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 1

UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 2
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 2.1

UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 3

UP Board Solutions

UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 4
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 4.1

UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 5

UP Board Solutions

UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 6
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 6.1

प्रश्न 7.
36x² + 4y² = 144.
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 7

प्रश्न 8.
16x² + y² = 16.
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 8
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 8.1

UP Board Solutions

प्रश्न 9.
4x² + 9y² = 36.
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 9

निम्नलिखित प्रश्नों 10 से 20 तक प्रत्येक में, दिए प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए।

प्रश्न 10.
शीर्षों (±5, 0), नाभियाँ (±4, 0).
हल:
a = 5, c = 4, c² = a² – b².
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 10

प्रश्न 11.
शीर्षों (0, ±13), नाभियाँ (0, ±5).
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 11

प्रश्न 12.
शीर्ष (±6, 0), नाभियाँ (±4, 0)
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 12

प्रश्न 13.
दीर्घ अक्ष के अंत्य बिन्दु (±3, 0), लघु अक्ष के अंत्य बिन्दु (0, ±2).
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 13

UP Board Solutions

प्रश्न 14.
दीर्घ अक्ष के अंत्य बिन्दु (0, ±√5), लघु अक्ष के अंत्य बिन्दु (±1, 0).
हल:
दीर्घ अक्ष, y-अक्ष के अनुदिश है।
a = √5, b = 1,
a² = 5, b² = 1.
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 14

प्रश्न 15.
दीर्घ अक्ष की लंबाई = 26, नाभियाँ (±5, 0).
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 15

प्रश्न 16.
दीर्घ अक्ष की लंबाई = 16, नाभियाँ (0, ±6).
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 16

प्रश्न 17.
नाभियाँ (±3, 0), a = 4.
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 17

UP Board Solutions

प्रश्न 18.
b = 3, c = 4, केन्द्र मूल बिन्दु पर, नाभियाँ x-अक्ष पर है।
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 18

प्रश्न 19.
केंद्र (0, 0) पर, दीर्घ अक्ष y-अक्ष पर और बिन्दुओं (3, 2) और (1, 6) से जाता है।
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 19

प्रश्न 20.
दीर्घ अक्ष, x-अक्ष पर और बिन्दुओं (4, 3), (6, 2) से जाता है।
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 20
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 20.1
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.3 20.2

UP Board Solutions

प्रश्नावली 11.4

निम्नलिखित प्रश्न 1 से 6 तक प्रत्येक में, अतिपरवलयों के शीर्षों, नाभियों के निर्देशांक, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए।

UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 1
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 1.1

UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 2

प्रश्न 3.
9y² – 4x² = 36.
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 3
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 3.1

UP Board Solutions

प्रश्न 4.
16x² – 9y² = 576.
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 4

प्रश्न 5.
5y² – 9x² = 36.
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 5
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 5.1

UP Board Solutions

प्रश्न 6.
49y² – 16x² = 784.
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 6

निम्नलिखित प्रश्न 7 से 15 तक प्रत्येक में, दिए गए प्रतिबंधों को संतुष्ट करते हुए अतिपरवलयका समीकरण ज्ञात कीजिए।

प्रश्न 7.
शीर्ष (±2, 0), नाभियाँ (±3, 0).
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 7

प्रश्न 8.
शीर्ष (0, ±5), नाभियाँ (0, ±8).
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 8

प्रश्न 9.
शीर्ष (0, ±3), नाभियाँ (0, ±5).
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 9

UP Board Solutions

प्रश्न 10.
नाभियाँ (±5, 0), अनुप्रस्थ अक्ष की लम्बाई = 8.
हल:
अनुप्रस्थ अक्ष की लम्बाई = 2a = 8
a = 4
a² = 16
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 10

प्रश्न 11.
नाभियाँ (0, ±13), संयुग्मी अक्ष की लम्बाई = 24.
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 11

प्रश्न 12.
नाभियाँ (±3√5, 0), नाभिलंब जीवा की लम्बाई = 8.
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 12

UP Board Solutions

प्रश्न 13.
नाभियाँ (±4, 0), नाभिलंब जीवा की लम्बाई 12 है।
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 13

प्रश्न 14.
शीर्ष (±7, 0), e = [latex]\frac { 4 }{ 3 }[/latex]
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 14
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 14.1

प्रश्न 15.
नाभियाँ (0, ±√10) हैं तथा (2, 3) से होकर जाता है।
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 15
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 11.4 15.1

UP Board Solutions

अध्याय 11 पर विविध प्रश्नावली

प्रश्न 1.
यदि एक परवलयाकार परावर्तक का व्यास 20 सेमी और गहराई 5 सेमी है, तो नाभि ज्ञात कीजिए।
हल:
परवलयाकार परावर्तक AOB का व्यास,
AB = 20 सेमी
AM = 10 सेमी
परावर्तक की गहराई, OM = 5 सेमी
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 1
यदि OX, OY निर्देशांक अक्ष हो तो बिन्दु परवलय पर स्थित है।
माना परवलय का समीकरण, y² = 4ax
10² = 4a x 5 या 100 = 20a या a = 5
परवलय की नाभि (a, 0) या (5, 0) है।

प्रश्न 2.
एक मेहराब परवलय के आकार का है और इसका अक्ष ऊर्ध्वाधर है। मेहराब 10 मीटर ऊँचा है और आधार में 5 मीटर चौड़ा है। यह परवलय के दो मीटर की दूरी पर शीर्ष से कितना चौड़ा होगा?
हल:
इसका आकार परवलय की आकृति का है।
माना OX, OY इसके निर्देशांक अक्ष है, और समीकरण y² = 4ax है।
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 2
मेहराब की ऊँचाई, OL = 10 मीटर
चौड़ाई EF = 5 मीटर
LF = [latex]\frac { 1 }{ 2 }[/latex]
EF = [latex]\frac { 1 }{ 2 }[/latex] x 5 = [latex]\frac { 5 }{ 2 }[/latex]
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 2.1
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 2.2

UP Board Solutions

प्रश्न 3.
एक सर्वसम भारी झूलते पुल की केबिल (cable) परवलय के रूप में लटकी हुई है। सड़क पथ जो क्षैतिज है 100 मीटर लम्बा है तथा केबिल से जुड़े अर्ध्वाधर तारों पर टिका हुआ है, जिसमें सबसे लम्बा तार 30 मीटर और सबसे छोटा तार 6 मीटर है। मध्य से 18 मीटर दूर सड़क पथ से जुड़े समर्थक (supporting) तार की लंबाई ज्ञात कीजिए।
हल:
माना OX, OY निर्देशांक अक्ष हैं। AOB परवलय के रूप में केबिल है। इसका समीकरण x² = 4ay के रूप में होगा।
सबसे छोटे तार की लम्बाई OL = 6 मीटर
सबसे बड़े तार की लम्बाई BM = 30 मीटर
शीर्ष O से रेखा LM की दूरी OL = 6 मीटर है।
सड़क की लंबाई AB = 100 मीटर, यदि C मध्य बिन्दु हो तो
CB = [latex]\frac { 1 }{ 2 }[/latex] AB = [latex]\frac { 1 }{ 2 }[/latex] x 100 = 50 मीटर
OC = CL – OL = 30 – 6 = 24 मीटर
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 3
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 3.1

UP Board Solutions

प्रश्न 4.
एक मेहराब अर्ध-दीर्घवृत्ताकार रूप का है। यह 8 मीटर चौड़ा है और केंद्र से 2 मीटर ऊँचा है। एक. सिरे से 1.5 मीटर दूर बिन्दु पर मेहराब की ऊँचाई ज्ञात कीजिए।
हल:
आकृति में ELF एक मेहराब है जिसकी चौड़ाई EF = 8 मीटर और ऊंचाई = 2 मीटर है।
माना OX, OY निर्देशांक अक्ष है। ELF एक दीर्घवृत्त है जिसमें a = 4, b = 2
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 4
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 4.1

प्रश्न 5.
एक 12 सेमी छड़ इस प्रकार चलती है कि इसके सिरे निर्देशांक्षों को स्पर्श करते हैं। छड़ के बिन्दु P का बिन्दुपथ ज्ञात कीजिए जो x-अक्ष के संपर्क वाले सिरे से 3 सेमी दूर है।
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 5
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 5.1

UP Board Solutions

प्रश्न 6.
त्रिभुज का क्षेत्रफल ज्ञात कीजिए जो परवलय x² = 12y के शीर्ष को इसकी नाभिलंब जीवा के सिरों को मिलाने वाली रेखाओं से बना है।
हल:
परवलय का समीकरण, x² = 12y
नाभि के निर्देशांक (a, 0) या (3, 0) हैं।
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 6
OF = 3 इकाई
नाभिलंब जीवा की लंबाई = 4a = 12
ΔPOQ का क्षेत्रफल = [latex]\frac { 1 }{ 2 }[/latex] x OF x PQ
= [latex]\frac { 1 }{ 2 }[/latex] x 3 x 12
= 18 वर्ग इकाई।

प्रश्न 7.
एक व्यक्ति दौड़पथ पर दौड़ते हुए अंकित करता है कि उससे दो झंडा चौकियों की दूरियों का योग सदैव 10 मीटर रहता है। और झंडा चौकियों के बीच की दूरी 8 मीटर है। व्यक्ति द्वारा बनाए पथ का समीकरण ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 7
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 7.1

UP Board Solutions

प्रश्न 8.
परवलय y² = 4ax के अंतर्गत एक समबाहु त्रिभुज है जिसका एक शीर्ष परवलय का शीर्ष है। त्रिभुज की भुजा की लंबाई ज्ञात कीजिए।
हल:
परवलय y² = 4ax, एक समबाहु त्रिभुज बनाई गई है।
मान लीजिए इसकी भुजा की लंबाई p है।
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 8
UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections 8.1

We hope the UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections (शंकु परिच्छेद) help you. If you have any query regarding UP Board Solutions for Class 11 Maths Chapter 11 Conic Sections (शंकु परिच्छेद), drop a comment below and we will get back to you at the earliest.

UP Board Solutions for Class 11 Maths Chapter 15 Statistics

UP Board Solutions for Class 11 Maths Chapter 15 Statistics (सांख्यिकी)

These Solutions are part of UP Board Solutions for Class 11 Maths. Here we have given UP Board Solutions for Class 11 Maths Chapter 15 Statistics (सांख्यिकी).

प्रश्नावली 15.1

प्रश्न 1 व 2 में दिए गए आँकड़ों के लिए माध्य के सापेक्ष विचलन ज्ञात कीजिए:

प्रश्न 1.
4, 7, 8, 9, 10, 12, 13, 17.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 1

UP Board Solutions

प्रश्न 2.
38, 70, 48, 40, 42, 55, 63, 46, 54, 44.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 2

प्रश्न 3 व 4 के आँकड़ों के लिए माध्यिका के सापेक्ष माध्य विचलन ज्ञात कीजिए:

प्रश्न 3.
13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17.
हल:
आँकड़ों को आरोही क्रम में लिखने (UPBoardSolutions.com) पर
10, 11, 11, 12, 13, 13, 14, 16, 16, 17, 17, 18
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 3

प्रश्न 4.
36, 72, 46, 42, 60, 45, 53, 46, 51, 49.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 4

UP Board Solutions

प्रश्न 5 व 6 के आँकड़ों के लिए माध्य के सापेक्ष माध्य विचलन ज्ञात कीजिए:

प्रश्न 5.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 5
हल:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 5.1

प्रश्न 6.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 6
हल:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 6.1

UP Board Solutions

प्रश्न 7 व 8 के आँकड़ों के लिए माध्यिका के सापेक्ष माध्यै विचलन ज्ञात कीजिए:

प्रश्न 7.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 7
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 7.1

प्रश्न 8.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 8
हल:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 8.1

UP Board Solutions

प्रश्न 9 व 10 के आँकड़ों के लिए मध्य के सापेक्ष माध्य विचलन ज्ञात कीजिए।

प्रश्न 9.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 9
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 9.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 9.2

UP Board Solutions

प्रश्न 10.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 10
हल:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 10.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 10.2

प्रश्न 11.
निम्नलिखित आँकड़ों के लिए माध्यिका के सापेक्ष माध्य विचलन ज्ञात कीजिए:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 11
हल:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 11.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 11.2

UP Board Solutions

प्रश्न 12.
नीचे दिए गए 100 व्यक्तियों की आयु के बंटन की माध्यिका आयु के सापेक्ष माध्य विचलन की गणना कीजिए:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 12
हल:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 12.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.1 12.2

UP Board Solutions

प्रश्नावली 15.2

प्रश्न 1 से 5 तक के लिए आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।

प्रश्न 1.
6, 7, 10, 12, 13, 4, 8, 12.
हल:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 1

प्रश्न 2.
प्रथम n प्राकृत संख्याएँ।
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 2
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 2.1

UP Board Solutions

प्रश्न 3.
3 के प्रथम 10 गुणज।
हल:
प्रथम दस 3 के गुणज : 3, 6, 9, 12, 15, 18, 21, 24, 27, 30
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 3
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 3.1

प्रश्न 4.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 4
हल:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 4.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 4.2

UP Board Solutions

प्रश्न 5.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 5
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 5.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 5.2

प्रश्न 6.
लघु विधि द्वारा माध्ये वे मानक विचलन ज्ञात कीजिए:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 6
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 6.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 6.2

UP Board Solutions

प्रश्न 7 व 8 में दिए गए बारंबारता बंटन के लिए माध्य व प्रसरण ज्ञात कीजिए:

प्रश्न 7.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 7
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 7.1

UP Board Solutions

प्रश्न 8.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 8
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 8.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 8.2

प्रश्न 9.
लघु विधि द्वारा माध्य, प्रसरण व मानक विचलन ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 9
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 9.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 9.2

UP Board Solutions

प्रश्न 10.
एक डिजाइन में बनाए गए वृत्तों के व्यास (मिमी में) नीचे दिए गए हैं।
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 10
वृत्तों के व्यासों का मानक विचलन के माध्य व्यास ज्ञात कीजिए।
हल:
दिए हुए असतत आँकड़ों को सतत (UPBoardSolutions.com) बारंबारता बंटन में बदलने के लिए अंतराल इस प्रकार हैं।
32.5 – 36.5, 36.5 – 40.5, 40.50 – 44.5, 44.5 – 48.5, 48.5 – 52.5
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 10.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.2 10.2

UP Board Solutions

प्रश्नावली 15.3

प्रश्न 1.
निम्नलिखित आँकड़ों से बताइए कि A या B में से किसमें अधिक बिखराव है।
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 1
हल:
माना कल्पित माध्य A = 45, h = 10.
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 1.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 1.2
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 1.3
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 1.4

UP Board Solutions

प्रश्न 2.
शेयरों X और Y के नीचे दिए गए मूल्यों से बताइए कि किसके मूल्यों में अधिक स्थिरता है ?
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 2
हल:
माना शेयर X के आँकड़ों में कल्पित माध्य = 52
और शेयर Y के आँकड़ों (UPBoardSolutions.com) में कल्पित माUP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 2.1ध्य = 105
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 2.2
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 2.3
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 2.4

UP Board Solutions

प्रश्न 3.
एक कारखाने की दो फर्मों A और B के कर्मचारियों को दिए मासिक वेतन के विश्लेषण का निम्नलिखित परिणाम है:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 3
(i) A और B में से कौन सी फर्म अपने कर्मचारियों को वेतन के रूप में अधिक राशि देती है?
(ii) व्यक्तिगत वेतनों में किस फर्म A या B में अधिक विचरण है ?
हल:
फर्म A के लिए :
वेतन पाने वाले कर्मचारियों की संख्या = 586
मासिक वेतन की माध्य = 5253 रू
फर्म A द्वारा दिया गया कुल (UPBoardSolutions.com) वेतन = 5253 x 586 = 3078258 रू
वेतन बंटन का प्रसरण = 100
मानक विचलन = 10
विचरण गुणांक = [latex s=2]\frac { \sigma }{ \overline { x } }[/latex] x 100
= [latex s=2]\frac { 10 }{ 5253 }[/latex] x 100
= [latex s=2]\frac { 1000 }{ 5253 }[/latex]
= 0.19
फर्म B के लिए:
वेतन पाने वाले कर्मचारियों की संख्या = 648
मासिक वेतन का संख्या = 5253 रू
फर्म B द्वारा गया कुल वेतन = 5253 x 648 रू = 3403944 रू
वेतन बंटन का प्रसरण = 121
मानक विचलन = 11
विचरण गुणांक = [latex s=2]\frac { \sigma }{ \overline { x } }[/latex] x 100
= [latex s=2]\frac { 11 }{ 5253 }[/latex] x 100 = 0.21
(i) फर्म A द्वारा दिया गया कुल मासिक वेतन = 3078258 रू
फर्म B द्वारा दिया गया कुल मासिक वेतन = 3403944 रू
अत: फर्म B फर्म A की तुलना में अधिक मासिक वेतन देती है।
(ii) फर्म A के वेतन बंटन की विचरण गुणांक = 0.19 और
फर्म A के वेतन बंटन का विचरण गुणांक = 0.21
अतः फर्म B के वेतन बंटन में अधिक (UPBoardSolutions.com) बिखराव है।

UP Board Solutions

प्रश्न 4.
टीम A द्वारा एक सत्र में खेले गए फुटबॉल मैचों के आँकड़े नीचे दिए गए हैं:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 4
टीम B द्वारा खेले गए मैचों में बनाए गए गोलोंकमाथ्य 2 प्रति मैच और गोलों का मानक विचलन 1.25 था।
किस टीम को अधिक संगत (consistent) समझा जाना चाहिए ?
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 4.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 4.2
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 4.3

प्रश्न 5.
पचास वनस्पति उत्पादों की लंबाई x (सेमी में) और भार y (ग्राम में) के योग और वर्गों के योग नीचे दिए गए हैं।
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 5
लंबाई या भार में किसमें अधिक विचरण है ?
हल:
लंबाई के लिए:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 5.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 5.2
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 15.3 5.3

UP Board Solutions

अध्याय 15 पर विविध प्रश्नावली

प्रश्न 1.
आठ प्रेक्षणों का माध्य तथा प्रसरण क्रमशः 9 और 9.25 है। यदि इनमें से छः प्रेक्षण 6, 7, 10, 12, 12, और 13 हैं, तो शेष दो प्रेक्षण ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 1.1

UP Board Solutions

प्रश्न 2.
सात प्रेक्षणों का माध्य तथा प्रसरण क्रमशः 8 और 16 हैं। यदि इनमें से पाँच प्रेक्षण 2, 4, 10, 12, 14 हैं तो शेष दो प्रेक्षण ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 2
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 2.1

प्रश्न 3.
छः प्रेक्षणों को माध्य तथा मानक विचलन क्रमशः 8 तथा 4 हैं। यदि प्रत्येक प्रेक्षण को 3 से गुणा कर दिया जाए तो परिणामी प्रेक्षणों का माध्य व मानक विचलन ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 3

UP Board Solutions

UP Board Solutions for Class 11 Maths Chapter 15 Statistics 4
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 4.1

प्रश्न 5.
बीस प्रेक्षणों का माध्य तथा मानक विचलन क्रमशः 10 तथा 2 हैं। जांच करने पर यह पाया गया कि प्रेक्षण 8 गलत है। निम्न में से प्रत्येक का सही मध्य तथा मानक विचलन ज्ञात कीजिए यदि
(i) गलत प्रेक्षण हटा दिया जाए।
(ii) उसे 12 से बदल दिया जाए।
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 5
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 5.1
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 5.2

UP Board Solutions

प्रश्न 6.
एक कक्षा के पचास छात्रों द्वारा तीन विषयों गणित, भौतिक शास्त्र व रसायन शास्त्र में प्राप्तांकों का माध्य व मानक विचलन नीचे दिए गए हैं:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 6
किस विषय में सबसे अधिक विचलन है तथा किसमें सबसे कम विचलन है?
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 6.1

प्रश्न 7.
100 प्रेक्षणों का माध्य और मानक विचलन क्रमशः 20 और 3 हैं। बाद में यह पाया गया कि तीन प्रेक्षण 21, 21 तथा 18 गलत थे। यदि गलत प्रेक्षणों को हटा दिया जाए तो माध्य व मानक विचलन ज्ञात कीजिए।
हल:
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 7
UP Board Solutions for Class 11 Maths Chapter 15 Statistics 7.1

We hope the UP Board Solutions for Class 11 Maths Chapter 15 Statistics (सांख्यिकी) help you. If you have any query regarding UP Board Solutions for Class 11 Maths Chapter 15 Statistics (सांख्यिकी), drop a comment below and we will get back to you at the earliest.

UP Board Solutions for Class 11 Maths Chapter 16 Probability

UP Board Solutions for Class 11 Maths Chapter 16 Probability (प्रायिकता)

These Solutions are part of UP Board Solutions for Class 11 Maths. Here we have given UP Board Solutions for Class 11 Maths Chapter 16 Probability (प्रायिकता).

प्रश्नावली 16.1

निम्नलिखित प्रश्नों 1 से 7 में निर्दिष्ट परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए।

प्रश्न 1.
एक सिक्के को तीन बार उछाला गया है।
हल:
एक सिक्के को 3 बार उछालने से प्रतिदर्श समष्टि
S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}

प्रश्न 2.
एक पासा दो बार फेंका गया है।
हल:
एक पासे को दो बार फेंकने से जो घटनाएं घटी उनका प्रतिदर्श समष्टि :
S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (UPBoardSolutions.com) (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4,1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5,4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

UP Board Solutions

प्रश्न 3.
एक सिक्का चार बार उछाला गया है।
हल:
एक सिक्के को 4 बार उछालने से घटनाओं का प्रतिदर्श समष्टि इस प्रकार है।
S = {HHHH, HHHT, HHTH, HTHH, HTTH, HTHT, HHTT, HTTT, THHH, THHT, THTH, TTHH, TTTH, TTHT, THTT, TTTT}

प्रश्न 4.
एकं सिक्का उछाला गया है और एक पासा फेंका गया है।
हल:
एक सिक्का व एक पासा उछालने पर प्रतिदर्श समष्टि
s = {H1, H2, H3, H4, H2, H6, T1, T2, T3, T4, T5, T6}

प्रश्न 5.
एक सिक्का उछाला गया है और केवल उस दशा में, जब सिक्के पर चित्त प्रकट होता है एक पासा फेंका जाता है।
हल:
सिक्के पर चित्त आने से एक पासा फेंका जाता है (UPBoardSolutions.com) अन्यथा नहीं की प्रतिदर्श समष्टि
s = {H1, H2, H3, H4, H2, H6, T}

प्रश्न 6.
X कमरे में 2 लड़के और 2 लड़कियाँ तथा Y कमरे में 1 लड़का और 3 लड़कियाँ हैं। उस परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए जिसमें पहले एक कमरा चुना जाता है और फिर एक बच्चा चुना जाता है।
हल:
माना X कमरे के लड़के व लड़कियों को B1, B2, G1, G2 और Y कमरे के लड़के व लड़कियों को B3, G3, G4, G5 से दर्शाया गया है।
एक कमरे को चुनना और फिर एक बच्चे को चुने जाने की प्रतिदर्श समष्टि
S = {XB1, XB2, XG1, XG2, YB3, YG3, YG4, YG5}

प्रश्न 7.
एक पासा लाल रंग का, एक सफेद रंग का और एक अन्य पासा नीले रंग का एक थैले में रखे हैं। एक पासा यादृच्छया चुना गया और उसे फेंका गया है। पासे का रंग और इसके ऊपर के फलक पर प्राप्त संख्या को लिखा गया है। प्रतिदर्श समष्टि का वर्णन कीजिए।
हल:
माना लाल रंग को R से, सफेद रंग को W से तथा नीले रंग को B से दर्शाया गया हो तो पासे को चुन कर अंकों को प्राप्त करने की प्रतिदर्श समष्टि।
S = {R1, R2, R3, R4, R5, R6, W1, W2, W3, W4, W5, W6, B1, B2, B3, B4, B5, B6}

UP Board Solutions

प्रश्न 8.
एक परीक्षण में 2 बच्चों वाले पैरिवारों में से प्रत्येक में लड़के-लड़कियों की संख्या को लिखा जाता
(i) यदि हमारी रूचि इस बात को जानने में है कि जन्म के क्रम में बच्चा लड़का है या लड़की है तो प्रतिदर्श समष्टि क्या होगी ?
(ii) यदि हमारी रूचि किसी परिवार में लड़कियों की संख्या जानने में है तो प्रतिदर्श समष्टि क्या होगी ?
हल:
(i) परिवार में दो बच्चे हैं वे लड़के, लड़की हो सकते हैं। इनकी प्रतिदर्श समष्टि = {BB, BG, GB, GG}
(ii) एक परिवार में कोई लड़की न हो या एक या दो लड़कियाँ होगी। अतः प्रतिदर्श समष्टि {0, 1, 2}

प्रश्न 9.
एक डिब्बे में 1 लाल और एक जैसी 3 सफेद गेंद रखी गई हैं। दो गेंद उत्तरोत्तर (in succession) बिना प्रतिस्थापित किए यादृच्छया निकाली जाती है। इस परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए।
हल:
डिब्बे में एक लाल व 3 सफेद गेंद हैं। यदि लाल को R से, सफेद को W से निरूपित किया जाए तो इस प्रशिक्षण का प्रतिदर्श समष्टि
S = {RW, WR, WW}.

प्रश्न 10.
एक परीक्षण में एक सिक्के को उछाला जाता है और यदि उस पर चित्त प्रकट होता है तो उसे पुनः उछाला जाता है। यदि पहली बार उछालने पर पट् प्राप्त होता है तो एक पासा फेंका जाता है। प्रतिदर्श समष्टि ज्ञात कीजिए।
हल:
यदि एक सिक्का उछाला जाता है और चित्त प्रकट होता है (UPBoardSolutions.com) तो दुबारा उछालने पर चित्त या पट् आ सकता है। इस प्रकार घटना HH या HT होगी। पट् आने पर पासा फेंका जाता है। पासा फेंकने से संख्या 1, 2, 3, 4, 5, 6 आ सकती है।
प्रतिदर्श समष्टि = {HH, HT, T1,T2, T3, T4, T5, T6}.

प्रश्न 11.
मान लीजिए कि बल्बों के एक ढेर में से 3 बल्ब यादृच्छया निकाले जाते हैं। प्रत्येक बल्ब को जाँची जाता है और उसे खराब (D) या ठीक (N) में वर्गीकृत करते हैं। इस परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए।
हल:
खराब के लिए D और ठीक बल्ब को N द्वारा निरूपित करते हैं। तीन बल्बों से बना प्रतिदर्श समष्टि इस प्रकार है।
{DDD, DDN, DND, NDD, NND, NDN, DNN, NNN}

UP Board Solutions

प्रश्न 12.
एक सिक्का उछाला जाता है। यदि परिणाम चित्त हो तो एक पासा फेंका जाता है। यदि पासे पर एक सम संख्या प्रकट होती है, तो पासे को पुनः फेंका जाता है। इस परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए।
हल:
एक सिक्का उछालने पर यदि चित्त को H से और पट् को T से दर्शाया जाए और चित्त आने पर पासा फेंका जाता है H1, H2, H3, H4, H5, H6 की घटनाएँ हो सकती हैं। H2, H4, H6 आने की अवस्था में पासा दुबारा फेंका जाता है जिससे प्रत्येक की 1, 2, 3, 4, 5, 6 की छः घटनाएं हो सकती हैं।
इस प्रकार प्रतिदर्श समष्टि है : {T1, H1, H3, H5, H21, H22, H23, H24, H25, H26, H41, H42,H43, H44, H45, H46, H61, H62, H63, H64, H65, H66}

प्रश्न 13.
कागज की चार पर्चियों पर संख्याएँ 1, 2, 3, 4 अलग-अलग लिखी गई हैं। इन पर्चियों को एक डिब्बे में रख कर भली-भाँति मिलाया गया है। एक व्यक्ति डिब्बे में से दो पर्चियाँ एक के बाद दूसरी बिना प्रतिस्थापित किए निकालता है। इस परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए।
हल:
एक डिब्बे में चार पर्चियाँ हैं। जिन पर 1, 2, 3, 4 लिखा है। यदि पर्ची (UPBoardSolutions.com) सं. 1 पहली पर्ची हो दूसरी पर्ची पर सं. 2, 3, 4 लिखा होगा। इसी प्रकार पहली पर्ची पर 2 लिखा हो तो शेष पर्ची पर 1, 3, 4 लिखा होगा। इस प्रकार प्रतिदर्श समष्टि है :
{(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3)}

प्रश्न 14.
एक परीक्षण में एक पासा फेंका जाता है और यदि पासे पर प्राप्त संख्या सम है तो एक सिक्का एक बार उछाला जाता है। यदि पासे पर प्राप्त संख्या विषम है तो सिक्के को दो बार उछालते हैं। प्रतिदर्श समष्टि लिखिए।
हल:
पासा फेंकने से यदि सम संख्या प्राप्त होती है तो सिक्का उछालने पर H या T की घटना होगी। यदि पासे पर विषम संख्या आती है तो सिक्का दो बार उछाला जाता है जिससे HH, HT, TH, TT घटनाएँ हो सकती हैं। इस प्रकार प्रतिदर्श समष्टि इस प्रकार है-
{2H, 2T, 4H, 4T, 6H, 6T, 1HH, 1HT, 1TH, 1TT, 3HH, 3HT, 3TH, 3TT, 5HH, 5HT, 5TH, 5TT}.

UP Board Solutions

प्रश्न 15.
एक सिक्का उछाला गया यदि उस पर पट् प्रकट होता है तो एक डिब्बे में से जिसमें 2 लाल और 3 काली गेंदे रखी हैं, एक गेंद निकालते हैं। यदि सिक्के पर चित्त प्रकट होता है तो एक पासा फेंका जाता है। इस परीक्षण का प्रतिदर्श समष्टि लिखिए।
हल:
यदि लाल रंग की गेंद को R1, R2 से तथा काले रंग की गेंद को B1, B2, B3 से दर्शाया जाए तो सिक्का उछालने पर यदि पट् आतो है तो R1, R2, B1, B2, B3 में से एक घटना होगी। यदि सिक्के पर चित्त आता है तो पासा फेंकने से 1, 2, 3, 4, 5, 6 आते हैं। तो प्रतिदर्श समष्टि इस प्रकार है :
{TR1, TR2, TB1, TB2, TB3, H1, H2, H3, H4, H2, H6}.

प्रश्न 16.
एक पासे को बार-बार तब तक फेंका जाता है जब तक उस पर 6 प्रकट न हो जाए। इस परीक्षण का प्रतिदर्श समष्टि क्या है ?
हल:
6 आने पर पासा दुबारा नहीं फेंका जाएगा। यदि 1, 2, 3, 4, 5 में से कोई संख्या प्रकट होती है तो पासा दुबारा नहीं फेंका जाती। इस परीक्षण का प्रतिदर्श समष्टि है:
{6, (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (1, 1, 6), (1, 2, 6),… (1, 5, 6), (2, 1, 6), (2, 2, 6), …, (2, 5, 6),… (3, 1, 6), (3, 2, 6), …, (3, 5, 6), (4, 1, 6), (4, 2, 6), … (4, 5, 6), (5, 1, 6), (5, 2, 6),…, (5, 5, 6)….}.

UP Board Solutions

प्रश्नावली 16.2

प्रश्न 1.
एक पासा फेंका जाता है। मान लीजिए घटना E ‘पासे पर संख्या 4′ दर्शाता है और घटना F ‘पासे पर सम संख्या’ दर्शाता है। क्या E और F परस्पर अपवर्जी हैं?
हल:
पासा फेंकने पर प्रतिदर्श समष्टि = {1, 2, 3, 4, 5, 6}
E (संख्या 4 दर्शाता है) = {4}
F (सम संख्या) = {2, 4, 6}
E ∩ F = {4} ∩ {2, 4, 6} = {4} ≠ φ
अतः E और F परस्पर अपवर्जी नहीं हैं।

प्रश्न 2.
एक पासा फेंका जाता है। निम्नलिखित घटनाओं का वर्णन कीजिए:
(i) A : संख्या 7 से कम है।
(ii) B : संख्या 7 से बड़ी है।
(iii) C : संख्या 3 का गुणज है।
(iv) D : संख्या 4 से कम है।
(v) E : 4 से बड़ी सम संख्या है।
(vi) F : संख्या 3 से कम नहीं है।
A ∪ B, A ∩ B, B ∪ C, E ∪ F, D ∩ E, A – C, D – E, F’, E ∩ F’ भी ज्ञात कीजिए।
हल:
S = {1, 2, 3, 4, 5, 6}
(i) A : संख्या 7 से कम है = {1, 2, 3, 4, 5, 6}
(ii) B : संख्या 7 से बड़ी है = पासे में कोई संख्या 7 से बड़ी नहीं है।
(iii) C : संख्या 3 का गुणज है = {3, 6}
(iv) D : संख्या 4 से कम है = {1, 2, 3}
(v) E : 4 से बड़ी सम संख्या है = {6}
(vi) F = संख्या 3 से कम नहीं है। = {3, 4, 5, 6}
A ∪ B = {1, 2, 3, 4, 5, 6} ∪ φ = {1, 2, 3, 4, 5, 6}
A ∩ B = {1, 2, 3, 4, 5, 6} ∩ φ = φ
B ∪ C = φ ∪ {3, 6} = {3, 6}.
E ∪ F = {6} ∪ {3, 4, 5, 6} = {3, 4, 5, 6}.
D ∩ E = {1, 2, 3} ∩ {6} = φ.
A – C = {1, 2, 3, 4, 5, 6} – {3, 6} = {1, 2, 4, 5}.
F’ = {3, 4, 5, 6}’ = S – {3, 4, 5, 6} = (UPBoardSolutions.com) {1, 2, 3, 4, 5, 6} – {3, 4, 5, 6} = {1, 2}.
E ∩ F’ = {6} ∩ {3, 4, 5, 6}’ = {6} ∩ {1, 2} = φ.

UP Board Solutions

प्रश्न 3.
एक परीक्षण में पासे के एक जोड़े को फेंकते हैं और उन पर प्रकट संख्याओं को लिखते हैं। निम्नलिखित संख्याओं का वर्णन कीजिए।
A : प्राप्त संख्याओं का योग 8 से अधिक है।
B : दोनों पासों पर संख्या 2 प्रकट होती है।
C : प्रकट संख्याओं का योग कम से कम 7 है और 3 का गुणज है।
इन घटनाओं के कौन-कौन से युग्म परस्पर अपवर्जी हैं ?
हल:
जब दो पासे फेंके जाते हैं, तो कुल संभावित परिणामों की संख्या = 6 x 6 = 36
A = प्राप्त संख्याओं का योग 8 से अधिक है।
= {(3, 6), (4, 5), (5, 4), (6, 3), (4, 6), (5, 5), (6, 4), (5, 6), (6, 5), (6, 6)}
B = कम से कम एक पासे पर संख्या 2 प्रकट होती है।
= {(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (2, 1), (2, 3), (2, 4), (2, 5), (2, 6)}
C = प्रकट संख्याओं का योग कम से कम 7 है और 3 का गुणज है।
= प्रकट संख्याओं का योग 9 और 12 है जो कि 3 का गुणज है।
= {{3, 6), (6, 3), (4, 5), (5, 4), (6, 6)}
A ∩ C = {3, 6), (4, 5), (5, 4), (6, 3), (4, 6), (5, 5), (6, 4), (5, 6), (6, 5), (6, 6)} ∩ {(3, 6), (6, 3), (5, 4), (6, 6)}
= {(3, 6), (6, 3), (4, 5), (5,4), (6, 6)}
A ∩ B = {(3, 6), (6, 3), (4, 5), (5, 4), (4, 6), (6, 4), (5, 5), (5, 6), (6, 5), (6, 6) ∩ {(1, 2), (3, 2), (2, 1), (2, 3), (4, 2), (2, 4), (5, 2), (2, 5), (2, 6), (6, 2)} = φ
B ∩ C = {(1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (2, 4), (4, 2), (2, 5), (5, 2), (2, 6), (6, 2)} ∩ {(3, 6), (6, 3), (4, 5), (5, 4), (6, 6)} = φ
A ∩ B = φ, B ∩ C = φ अर्थात् A और B, B और C परस्पर अपवर्जी हैं।
परन्तु A ∩ C ≠ φ , अत: A और C परस्पर अपवर्जी नहीं हैं।

UP Board Solutions

प्रश्न 4.
तीन सिक्कों को एक बार उछाला जाता है। मान लीजिए कि घटना “तीन चित्त दिखना” को A से, घटना 2 चित्त और 1 पट् दिखना’ को B से, घटना “3 पट लिखना’ को C से और घटना ‘पहले सिक्के पर चित्त दिखना’ को D से निरूपित किया गया है। बताइए कि इनमें से कौन-सी घटनाएँ
(i) परस्पर अपवर्जी हैं ?
(ii) सरल हैं।
(iii) मिश्र हैं ?
हल:
जब तीन सिक्के उछाले जाते हैं तो प्रतिदर्श समष्टि
S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT},
A : तीन चित्त दिखना = {HHH}
B : दो चित्त और एक पट् दिखना = {HHT, HTH, THH}
C : तीन पट् दिखना = {TTT}
D : पहले सिक्के पर चित्त दिखना = (UPBoardSolutions.com) {HHH, HHT, HTH, HTT}
(i) A ∩ B = {HHH} ∩ {HHT, HTH, THH} = φ
A ∩ C = {HHH} ∩ {TTT} = φ
A ∩ D = {HHH} ∩ {HHH, HHT, HTH, HTT} = {HHH} ≠ φ
B ∩ C = {HHT, HTH, THH} ∩ {TTT} = φ
B ∩ D = {HHT, HTH, THH} ∩{HHH, HHT, HTH, HTT} = (HHT, HTH} ≠ φ
C ∩ D = {TTT} ∩ {HHH, HHT, HTH, HTT} = φ
A ∩ B ∩ C = {HHH} ∩ {HHT, HTH, THH} ∩ {TTT}
अत: परस्पर अपवर्जी घटनाएँ।
A और B, A और C, B और C, C और D, A, B और C.
(ii) सरल घटनाएँ : A और C
(iii) मिश्र घटनाएँ : B और D.

प्रश्न 5.
तीन सिक्के एक बार उछाले जाते हैं। वर्णन कीजिए
(i) दो घटनाएँ जो परस्पर अपवर्जी हैं।
(ii) तीन घटनाएँ जो परस्पर अपवर्जी और नि:शेष हैं।
(iii) दो घटनाएँ जो परस्पर अपवर्जी नहीं हैं।
(iv) दो घटनाएँ जो परस्पर अपवर्जी हैं किन्तु निःशेष नहीं हैं।
(v) तीन घटनाएँ जो परस्पर अपवर्जी हैं किन्तु निःशेष नहीं हैं।
हल:
(i) दो घटनाएँ जो परस्पर अपवर्जी हैं।
A = कम से कम दो चित्त प्राप्त करना = {HHH, HHT, HTH, THH}
B = कम से कर्मी पप्रसि (करमा = {TTT, TTH, THT, HTT}
(ii) तीन घटनाएँ A, B, C जो परस्पर अपवर्जी और नि:शेष हैं।
A = अधिक से अधिक एक चित्त प्राप्त करना | = {TTT, TTH, THT, HTT}
B = तथ्यत, 2 चित्त प्राप्त करना = {HHT, HTH, THH}
C = तथ्यतः, 3 चित्त प्राप्त करना = {HHH}
(iii) दो घटनाएँ A और B जो परस्पर अपवर्जी नहीं हैं।
A : अधिकतम 2 पट् प्राप्त करन = {HHH, HHT, HTH, THH, TTH, THT, HTT}
B : तथ्यतः 2 चित्त प्राप्त करना = {HHT, HTH, THH}
A ∩ B = {HHT, HTH, THH} ≠ φ
(iv) दो घटनाएँ A और B जो परस्पर अपवर्जी हैं किन्तु निःशेष नहीं हैं।
A : तथ्यतः एक चित्त प्राप्त करना = {TTH, THT, HTT}
B : तथ्यत: 2 चित्त प्राप्त करना = {HHT, HTH, THH)
(v) तीन घटनाएँ A, B, C जो परस्पर उपवर्जी हैं किन्तु नि:शेष नहीं हैं।
A : तथ्यत: एक पट् प्राप्त करना = {HHT, THT, THH}
B : तथ्यतः 2 पट् प्राप्त करना = {TTH, THT, HTT}
C : तथ्यतः 3 पट् प्राप्त करना = {TTT}
[नोट : घटनाएँ भिन्न-भिन्न भी हो सकती हैं।

UP Board Solutions

प्रश्न 6.
दो पासे फेंके जाते हैं। घटनाएँ A, B और C निम्नलिखित प्रकार से हैं:
A : पहले पासे पर सम संख्या प्राप्त होना।
B : पहले पासे पर विषम संख्या प्राप्त होना।
C : पासों पर प्राप्त संख्याओं का योग ≤ 5 होना।
निम्नलिखित घटनाओं का वर्णन कीजिए:
(i) A’
(ii) B – नहीं
(iii) A या B
(iv) A और B
(v) A किन्तु C नहीं
(vi) B या C
(vii)B और C
(viii) A ∩B’ ∩ C’
हल:
दो सिक्के फेंकने पर प्रतिदर्श समष्टि
S = {(1, 1), (1, 2), …
(1, 6), (2, 1), (2, 2), …
(2, 6), (3, 1), (3, 2), …
(3, 6), (4, 1), (4, 2),…
(4, 6), (5, 1), (5, 2),…
(5, 6), (6, 1), … (6, 6)}
A = पहले पासे पर सम संख्या प्राप्त होगा।
= {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)} = A
B = पहले पासे पर विषम संख्या प्राप्त होना। (UPBoardSolutions.com)
= {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(3, 1), (3, 2), (3, 3), (3, 4),(3, 5), (3, 6),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)}
C = पासों पर प्राप्त संख्याओं का योग ≤ 5 होना।
= {(1, 1), (1, 2), (1, 3), (1, 4),
(2, 1), (2, 2), (2, 3),
(3, 1), (3, 2), (4, 1)}
(i) A’ = S – A
= {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)}
= B

UP Board Solutions
(ii) B-नहीं = B’ = पहले पासे पर विषम संख्या का न होना
= {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}
= A
(ii) A या B = A ∪ B = {x : x पहले पासे पर सम संख्या का होना} ∪ {पहले पासे पर विषम संख्या का होना}
= S
(iv) A और B = A ∩ B
= {x : x पहले पासे पर सम संख्या का होना} {पहले पासे पर विषम संख्या का होना}
= φ
(v) A किन्तु C- नहीं
= {x : x पहले पासे पर सम संख्या का होना} – {पासों पर प्राप्त संख्याओं का योग ≤ 5}
A – C= {(2, 1), (2, 2), …, (2, 6), (4, 1), (4, 2), … (4, 2), … (4, 6), (6, 1), (6, 2), …. (6, 6)} – {(1, 1), (1, 2), (1, 3), (1,4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}
= {(2, 4), (2, 5), (2, 6), (4, 2), (4, 3),… (4, 6), (6, 1), (6, 2), … (6, 6)}
(vi) B या C = B ∪ C = {x : x, पहले पारसे पर विषम संख्या होगा। ∪ {पासों पर प्राप्त संख्याओं का योग ≤ 5}
= {(1, 1), (1, 2), …, (1, 6), (3, 1), (3, 2), …, (3, 6), (5, 1), (5, 2), … (5, 6)} ∪ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 2), (4, 1)} = {(1,1), (1, 2), … (1, 6), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), … (3, 6), (4, 1), (5,1), (5, 2), (5, 3), … (5, 6).
(vii) B और C अर्थात्
B ∩ C = {(1, 1), … (1, 6), (3, 1), (3, 2),… (3, 6), (5, 1), (5, 2), (5, 3), … (5, 6)} ∩ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), 72, 2) (2, 3), (3, 1), (3, 2), (4, 1)}.
= {(1, 1), (1, 2), (1, 3), (1, 4), (3, 1), (3, 2)}
(viii) यहाँ B’ = A
A ∩ B’ = A ∩ A = A
A ∩ B’ ∩ C’ = {(2, 1), (2, 2), … (2, 6), (4, 1), (4, 2),…,(4, 6), (6, 1), (6, 2),… (6, 6)} ∩ {(1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6), (4, 2), (4, 3),…(4, 6), (5, 1), (5, 2),… (5, 6), (6, 1), (6, 2), …. (6, 5)}
= {(2, 4), (2, 5), (2, 6), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}.

UP Board Solutions

प्रश्न 7.
उपर्युक्त प्रश्न 6 को देखिए और निम्नलिखित में सत्य या असत्य बताइए (अपने उत्तर का कारण दीजिए:
(i) A और B परस्पर अपवर्जी हैं।
(ii) A और B परस्पर अपवर्जी और नि:शेष हैं।
(iii) A = B’
(iv) A और C परस्पर अपवर्जी हैं।
(v) A और B’ परस्पर अपवर्जी हैं।
(vi) A’, B’, C परस्पर अपवर्जी और निःशेष घटनाएँ हैं।
हल:
(i) सत्ये।
A : पहले पासे पर सम संख्या का होना
B : पहले पासे पर विषम संख्या का होना A और B में कोई भी घटना सभान नहीं है।
A ∩ B = φ ⇒ A और B परस्पर अपवर्जी घटनाएँ हैं।
(ii) सत्य :
A : पहले पासे पर सम संख्या होना
B : पहले पासे पर विषम संख्या होना
A ∪ B = पहले पासे पर सम या विषम कोई (UPBoardSolutions.com) भी संख्या हो सकती है, दूसरे पासे पर 1 से 6 तक कोई भी संख्या हो सकती है।
अर्थात् A और B परस्पर अपवर्जी और नि:शेष घटनाएँ हैं।
(iii) सत्य :
B’ = {पहले पासे पर विषम संख्या होना}
= पहले पासे पर विषम संख्या न होना
= पहले पासे पर सम संख्या होना।
= A
(iv) असत्य
A = पहले पासे पर सम संख्या होना
C = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}
A और C में (2, 1), (2, 2), (2, 3), (4, 1) समान घटनाएँ हैं।
A ∩ C ≠ φ
अतः A और C परस्पर अपवर्जी नहीं हैं।
(v) असत्य B’ = A
A ∩ B’ = A ∩ A = A ≠ φ
A तथा B’ परस्पर अपवर्जी नहीं हैं।
(vi) असत्य A’ = B, B’ = A
A’ ∩ B’ = B ∩ A = φ
परन्तु A’ ∩ C = B ∩ C = {x : x पहले पासे पर विषम संख्या होना} {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}
= {(1,1), (1, 2), (1, 3), (1, 4), (3, 1), (3, 2)} ≠ φ
B’ ∩ C = A ∩ C [B’ = A]
= {x : x, पहले पासे पर सम संख्या का होना} ∩ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}
(2, 1), (2, 2), (2, 3), (4, 1), A और C दोनों में समान घटनाएँ हैं।
B’ ∩ C ≠ φ
अर्थात् A’, B’, और C परस्पर अपवर्जी नहीं हैं और न ही नि:शेष हैं।

UP Board Solutions

प्रश्नावली 16.3

प्रश्न 1.
प्रतिदर्श समष्टि S = {ω1, ω2, ω3, ω4, ω5, ω6} के परिणामों के लिए निम्नलिखित में से कौन से प्रायिकता निर्धारण वैध नहीं हैं:
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 1
हल:
(a) 0.1 + 0.01 + 0.05 + 0.03 + 0.01 + 0.2 + 0.6 = 1.00
घटनाओं की दी गयी प्रायिकता को योगफल 1 है।
अतः निर्धारित प्रायिकता वैध है।
(b) दी गयी प्रायिकताओं का योगफल
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 1.1
दी गयी प्रायिकता वैध है।
(c) दी हुई प्रायिकताओं का योग’ = 0.1 + 0.1 + 0.3 + 0.4 + 0.5 + 0.6 + 0.7 = 2.7
यह एक से अधिक है।
अतः दी गयी प्रायिकता वैध नहीं है।
(d) किसी भी घटना की प्रायिकता ऋणात्मक नहीं हो सकती। यहाँ पर दो प्रायिकताएँ – 0.1 और -0.2 ऋणात्मक हैं।
अतः दी गयी प्रायिकता वैध नहीं है।
(e) दी गयी प्रायिकताओं का योगफल
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 1.2
जो कि एक से अधिक है।
अतः दी गयी प्रायिकता वैध नहीं है।

UP Board Solutions

प्रश्न 2.
एक सिक्का दो बार उछाला जाता है। कम से कम एक पट् प्राप्त होने की क्या प्रायिकता है?
हल:
दिए हुए परीक्षण का प्रतिदर्श समष्टि
S = {HH, HT, TH, TT}
कुल सम्भावित परिणामों की संख्या = 4
कम से कम एक पट् प्राप्त करने के तरीके TH, HT, TT = 3
एक सिक्के को दो बार उछालने से कम से कम 1 पट् प्राप्त करने की प्रायिकता = [latex s=2]\frac { 3 }{ 4 }[/latex]

प्रश्न 3.
एक पासा फेंका जाता है। निम्नलिखित घटनाओं की प्रायिकता ज्ञात कीजिए:
(i) एक अभाज्य संख्या प्रकट होना।
(ii) 3 या 3 से बड़ी संख्या प्रकट होना।
(iii) 1 या 1 से छोटी संख्या प्रकट होना।
(iv) छः से बड़ी संख्या प्रकट होना।
(v) छः से छोटी संख्या प्रकट होना।
हल:
एक पासे को फेंकने में परीक्षण का प्रतिदर्श समष्टि
S = {1, 2, 3, 4, 5, 6}
अर्थात् कुल सम्भावित परिणाम
n(S) = 6
(i) अभाज्य संख्याएँ 2, 3, 5 हैं।
n (A) = 3
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 3

UP Board Solutions

प्रश्न 4.
ताश की एक गड्डी के 52 पत्तों में से एक पत्ता यादृच्छया निकाला गया है।
(a) प्रतिदर्श समष्टि में कितने बिन्दु हैं ?
(b) पत्ते का हुकुम का इक्का होने की प्रायिकता क्या है ?
(c) प्रायिकता ज्ञात कीजिए कि पत्ता
(i) इक्का है
(ii) काले रंग का है।
हल:
(a) ताश की गड्डी में कुल 52 पत्ते होते हैं। जब एक पत्ता निकाला जाता है तो इसके प्रतिदर्श समष्टि में 52 बिन्दु होते हैं।
(b) ताश की गड्डी में हुकुम का एक इक्का होता है। यदि एक पत्ता निकालने की घटना को A से दर्शाया जाए।
n(A) = 1, n(S) = 52
P(A) = P(हुकुम का इक्का ) = (UPBoardSolutions.com) [latex s=2]\frac { 1 }{ 52 }[/latex]
(c) (i) यदि B इक्का निकालने को दर्शाता हो तो
n(B) = 4 [ताश की गड्डी में 4 इक्के होते हैं।]
n(S) = 52
P(B) = [latex s=2]\frac { 1 }{ 13 }[/latex]
(ii) C काले रंग हुकुम की पत्ते आने की घटना को दर्शाता है।
n(C) = 26 [ ताश की गड्डी में 26 काले पत्ते होते हैं।
n(C) = 52
P(C) = [latex s=2]\frac { 26 }{ 52 }[/latex] = [latex s=2]\frac { 1 }{ 2 }[/latex]

प्रश्न 5.
एक अनभिनत (unbiased) सिक्का जिसके एक तल पर 1 और दूसरे तल पर 6 अंकित है तथा एक अनभिनत पासा दोनों को उछाला जाता है। प्रायिकता ज्ञात कीजिए कि प्रकट संख्याओं का योग
(i) 3 है
(ii) 12 है।
हल:
एक पासे पर 1 व 6 अंकित है और दूसरे पर 1, 2, 3, 4, 5, 6.
प्रतिदर्श समष्टि = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}
(i) दी गयी., संख्याओं का योग 3 घटना (1, 2) से प्राप्त होता है।
अनुकूल परिणामों की संख्या = 1
प्रायिकता जेब प्राप्त संख्याओं का योग 3 है = [latex s=2]\frac { 1 }{ 12 }[/latex]
(ii) दी गयी संख्याओं को योग घटना (6, 6) से प्राप्त होता है। यहाँ अनुकूल परिणामों की संख्या = 1
प्रायिकता जब प्राप्त संख्याओं का योग 12 है = [latex s=2]\frac { 1 }{ 12 }[/latex]

UP Board Solutions

प्रश्न 6.
नगर परिषद् में चार पुरुष के छः स्त्रियाँ हैं। यदि एक समिति के लिए यादृच्छया एक परिषद् सदस्य चुना गया है तो एक स्त्री के चुने जाने की कितनी सम्भावना है ?
हल:
नगर परिषद् में चार पुरुष व छः स्त्रियाँ हैं।
उनमें से किसी एक को चुनने के तरीके = 10[latex]{ C }_{ 1 }[/latex]
कुल सम्भावित परिणामों की संख्या = 10
कुल 6 स्त्रियाँ हैं। उनमें से एक स्त्री को चुनने के तरीके = 6.
अनुकूल परिणामों की संख्या = 6
एक स्त्री को चुने जाने की प्रायिकता = [latex s=2]\frac { 6 }{ 10 }[/latex] = [latex s=2]\frac { 6 }{ 5 }[/latex]

प्रश्न 7.
एक अनभिनत सिक्के को चार बार उछाला जाता है और एक व्यक्ति प्रत्येक चित्त पर एक रूपया जीतता है और प्रत्येक पट् पर 1.50 रू हारता है। इस परीक्षण के प्रतिदर्श समष्टि से ज्ञात कीजिए कि आप चार उछालों में कितनी विभिन्न राशियाँ प्राप्त कर सकते हैं। साथ ही इन राशियों से प्रत्येक की प्रायिकता भी ज्ञात कीजिए।
हल:
सिक्के की उछाल में पाँच तरीकों से चित्त प्राप्त कर सकते हैं। जो निम्न प्रकार हैं।
कुल संभावित परिणाम = {HHHH, HHHT, HHTH, HHTT, HTHH, HTHT, HTTH, HTTT, THHH, THHT, THTH, THTT, TTHH, TTHT, TTTH, TTTT}
(i) कोई भी चित्त प्राप्त नहीं होता या चारों पट् प्राप्त होते हैं।
चारों पट् के आने पर हानि = 4 x 1.50 = 6
चार पट् प्राप्त करने के तरीके (TTTT) = 1
कुल सम्भावित परिणाम = 16
चार पट् प्राप्त करने की प्रायिकता = [latex s=2]\frac { 1 }{ 16 }[/latex]

(ii) जब एक चित्त और 3 पट् प्राप्त होते हैं।
हानि = 3 x 1.50 – 1 x 1 = 4.50 – 1.00 = 3.50 रू
एक चित्त और 3.पट् इस प्रकार आ सकते हैं:
{TTTH, THT, THTT, HTTT}
4 तरीकों से एके चित्त और 3 पट् प्राप्त हो सकते हैं।
कुल सम्भावित परिणाम = 16
एक चित्त प्राप्त करने की प्रायिकता = [latex s=2]\frac { 4 }{ 16 }[/latex] = [latex s=2]\frac { 1 }{ 4 }[/latex]

(iii) जब 2 चित्त और 2 पट् प्रकट होते हैं।
हानि = 2 x 1.5 – 1 x 2 = 3 – 2 = 1 रू
2 चित्त और 2 पट् इस प्रकार प्राप्त हो सकते हैं।
{ÉHTT, HTHT, HTTH, THHT, THTH, TTHH}
छः तरीकों से 2 चित्त और 2 पट् प्राप्त हो सकते हैं।
कुल सम्भावित परिणाम = 16
2 चित्त प्राप्त करने की प्रायिकता = [latex s=2]\frac { 6 }{ 16 }[/latex] = [latex s=2]\frac { 3 }{ 8 }[/latex]

(iv) जब 3 चित्त और 1 पट् प्रकट होता है, तब
लाभ = 3 x 1 – 1 x 1.5 = 3 – 1.30 = 1.50 रू
3 चित्त प्राप्त करने के तरीके = {HHHT, HHHH, HTHH, THHH}
चार तरीकों से 3 चित्त और 1 पट् प्राप्त होता है।
कुल सम्भावित परिणाम = 16
3 चित्त प्राप्त करने की प्रायिकता = [latex s=2]\frac { 4 }{ 16 }[/latex] = [latex s=2]\frac { 1 }{ 4 }[/latex]

(v) चारों चित्त एक तरीके से प्राप्त कर सकते हैं, तब
लाभ = 4 x 1 = 4 रू
कुल सम्भावित परिणाम = 16
चार चित्त प्राप्त करने की प्रायिकता = [latex s=2]\frac { 1 }{ 16 }[/latex]

UP Board Solutions

प्रश्न 8.
तीन सिक्के एक बार उछाले जाते हैं। निम्नलिखित की प्रायिकता ज्ञात कीजिए:
(i) तीन चित्त प्रकट होना
(ii) 2 चित्त प्रकट होना
(iii) न्यूनतम 2 चित्त प्रकट होना
(iv) अधिकतम 2 चित्त प्रकट होना
(v) एक भी’चित्त प्रकट न होना
(vi) 3 पट् प्रकट होना
(vii) तथ्यतः 2पट् प्रकट होना
(viii) कोई भी पट् प्रकट न होना,
(ix) अधिकतम पट् प्रकट होना
हल:
यदि 3 सिक्के उछाले जाते हैं तो परीक्षण का प्रतिदर्श समष्टि
S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}
कुल सम्भावित परिणाम = 8
(i) तीन चित्त {HHH} एक तरीके से प्रकट होता है।
अत: 3 चित्त प्राप्त करने की प्रायिकता = [latex s=2]\frac { 1 }{ 8 }[/latex]

(ii) 2 चित्त या 2 चित्त 1 पट् प्राप्त करने के HHT, HTH, THH तीन तरीके हैं।
कुल सम्भावित परिणाम = 8
2 चित्त प्रकट होने की प्रायिकता (UPBoardSolutions.com) = [latex s=2]\frac { 3 }{ 8 }[/latex]

(iii) न्यूनतम 2 चित्त प्राप्त करने के लिए
2 चित्त 1 पट् या 3 चित्त आएंगे
न्यूनतम 2 चित्त HHT, HTH, THH, HHH, चार तरीकों से प्रकट हो सकते हैं।
अतः न्यूनतम 2 चित्त प्रकट होने की प्रायिकता = [latex s=2]\frac { 4 }{ 8 }[/latex] = [latex s=2]\frac { 1 }{ 2 }[/latex]

(iv) अधिकतम 2 चित्त, इस प्रकार प्रकट होंगे।
(a) कोई चित्त नहीं या तीन पट्
(b) एक चित्त 2 पट्
(c) 2 चित्त 1 पट्
यह {TTT, HTT, THT, TTH, HHT, HTH, THH} सात तरीकों से प्रकट हो सकते हैं।
कुल संभावित परिणाम = 8
अधिकतम 2 चित्त प्रकट होने की प्रायिकता = [latex s=2]\frac { 7 }{ 8 }[/latex]

(v) एक भी चित्त न आने का अर्थ है तीन पट् प्रकट होना जो (TTT) एक तरीके से हो सकता है।
कुल संभावित परिणाम = 8
अतः एक भी चित्त न आने की प्रायिकता = [latex s=2]\frac { 1 }{ 8 }[/latex]

(vi) तीन पट् (TTT) एक तरीके से प्रकट हो सकते हैं।
तीन पट् प्रकट होने की प्रायिकता = [latex s=2]\frac { 1 }{ 8 }[/latex]

(vii) तथ्यत: 2 सट् (TTH, THT, HTT) तीन तरीकों से प्राप्त हो सकते हैं।
कुल संभावित परिणाम = 8
दो पट् प्रकट होने की प्रायिकता = [latex s=2]\frac { 3 }{ 8 }[/latex]

(viii) कोई पट् नहीं का अर्थ है तीनों चित्त प्रकट होते हैं तो (HHH) 1 तरीके से ही हो सकता है।
कुल संभावित परिणाम = 8
कोई पट् प्रकट न होने की प्रायिकता = [latex s=2]\frac { 1 }{ 8 }[/latex]

(ix) अधिकतम दो पट् प्रकट होना = तीनों पट् प्रकट नहीं होते।
तीनों पट् प्रकट होने की प्रायिकता = [latex s=2]\frac { 1 }{ 8 }[/latex]
अधिकतम दो पट् प्रकट होने की प्रायिकता = 1 – (तीनों पट् प्रकट होने की प्रायिकता)
= 1 – [latex s=2]\frac { 1 }{ 8 }[/latex] = [latex s=2]\frac { 7 }{ 8 }[/latex]

UP Board Solutions

प्रश्न 9.
यदि किसी घटना A की प्रायिकता [latex s=2]\frac { 2 }{ 11 }[/latex] है तो घटना A – नहीं’ की प्रायिकता ज्ञात कीजिए।
हल:
P(A) = [latex s=2]\frac { 2 }{ 11 }[/latex]
P(A – नहीं) = P (A’) = 1 – P(A)
= 1 – [latex s=2]\frac { 2 }{ 11 }[/latex] = [latex s=2]\frac { 9 }{ 11 }[/latex]

प्रश्न 10.
शब्द ASSASSINATION’ से एक अक्षर यादृच्छया चुना जाता है। प्रायिकता ज्ञात कीजिए कि चुना गया अक्षर
(i) एक स्वर (vowel) है
(ii) एक व्यंजन (consonant) है।
हल:
शब्द ASSASSINATION में कुल 13 अक्षर हैं जिसमें (AAAIIO) 6 स्वर और (SSSSNNT) 7 व्यंजन है।
n(S) = 13
स्वरों की संख्या = 6
एक स्वर चुनने की प्रायिकता = [latex s=2]\frac { 6 }{ 13 }[/latex]
(ii) व्यंजनों की संख्या = 7
n(S) = 13
एक व्यंजन चुनने की प्रायिकता (UPBoardSolutions.com) = [latex s=2]\frac { 7 }{ 13 }[/latex]

प्रश्न 11.
एक लाटरी में एक व्यक्ति 1 से 20 तक की संख्याओं में से छः भिन्न-भिन्न संख्याएँ यादृच्छया चुनता है और यदि ये चुनी गईं छः संख्याएँ उन छः संख्याओं से मेल खाती हैं जिन्हें लाटरी समिति ने पूर्व निर्धारित कर रखा है, तो वह व्यक्ति इनाम जीत जाता है। लाटरी के खेल में इनाम जीतने की प्रायिकता क्या है ?
हल:
1 से 20 तक की प्राकृत संख्याओं में से 6 संख्या चुनने के तरीके (UPBoardSolutions.com) = 20[latex]{ C }_{ 6 }[/latex]
= [latex s=2]\frac { 20\times 19\times 18\times 17\times 16\times 15 }{ 1\times 2\times 3\times 4\times 5\times 6 }[/latex]
= 38760
केवल एक ही अनुकूल परिणाम है।
अतः लाटरी जीतने की प्रायिकता = [latex s=2]\frac { 1 }{ 38760 }[/latex]

UP Board Solutions

प्रश्न 12.
जाँच कीजिए कि निम्न प्रायिकताएँ PA) और P(B) युक्ति संगत (consistency) परिभाषित की गई हैं।
(i) P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6
(ii) PA) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8
हल:
(i) दिया है : P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6
यहाँ P(A ∩ B) = 0.6 > P(A)
अत: P(A) और P(B) युक्ति संगत नहीं है।
(ii) यहाँ पर P(A) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8
अब P(A ∩ B) = P(A) + P(B) – P(A ∪ B) = 0.5 + 0.4 – 0.8
P(A ∩ B) = 0.1,
अत: P(A) और P(B) युक्ति संगत है।

प्रश्न 13.
निम्नलिखित सारणी में खाली स्थान भरिए:
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 13
हल:
(i) P(A) = [latex s=2]\frac { 1 }{ 3 }[/latex], P(B) = [latex s=2]\frac { 1 }{ 5 }[/latex], P(A ∩ B) = [latex s=2]\frac { 1 }{ 15 }[/latex], P(A ∪ B) = ?
P(A ∪ B) = P(A) + PB) – P(A ∩ B)
= [latex s=2]\frac { 1 }{ 3 }[/latex] + [latex s=2]\frac { 1 }{ 5 }[/latex] – [latex s=2]\frac { 1 }{ 15 }[/latex]
= [latex s=2]\frac { 8 }{ 15 }[/latex] – [latex s=2]\frac { 1 }{ 15 }[/latex]
= [latex s=2]\frac { 7 }{ 15 }[/latex]
(ii) P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
0.6 = 0.35 + P(B) – 0.25
P(B) = 0.6 – 0.35 + 0.25 = 0.5.
(iii) P (A ∪ B) = P(A) + P(B) – P(A ∩ B)
0.7 = 0.5 + 0.35 – P(A ∩ B)
P(A ∩ B) = 0.5 + 0.35 – 0.7 = 0.15.

UP Board Solutions

प्रश्न 14.
P(A) = [latex s=2]\frac { 3 }{ 5 }[/latex] और P(B) = [latex s=2]\frac { 1 }{ 5 }[/latex] द्विा गया है। यदि A और B परस्पर अपवर्जी घटनाएँ हैं, तो P(A या B) ज्ञात कीजिए।
हल:
A और B परस्पर अपवर्जी घटनाएँ हैं, तब
P(A ∩ B) = 0
P(A) = [latex s=2]\frac { 3 }{ 5 }[/latex], P(B) = [latex s=2]\frac { 1 }{ 5 }[/latex]
P(A या B) = P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
P(A ∪ B) = [latex s=2]\frac { 3 }{ 5 }[/latex] + [latex s=2]\frac { 1 }{ 5 }[/latex] – 0 = 3

प्रश्न 15.
यदि E और Fघटनाएँ इस प्रकार की हैं कि P(E) = [latex s=2]\frac { 1 }{ 4 }[/latex], P(F) = [latex s=2]\frac { 1 }{ 2 }[/latex], और P(E और F) = [latex s=2]\frac { 1 }{ 8 }[/latex] तो ज्ञात कीजिए
(i) P(E या F)
(ii) P(E- नहीं और F- नहीं)।
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 15

प्रश्न 16.
घटनाएँ E और F इस प्रकार हैं कि P(E-नहीं और F- नहीं) = 0.25, बताइए कि E और F परस्पर अपवर्जी हैं या नहीं।
हल:
PE – नहीं और F – नहीं) = P(E’ ∩ F’)
= P[(E ∪ F)’]
अर्थात् = 1 – P(E ∪ F) = 0.25
P(E ∪ F) = 1 – 0.25 = 0.75
P(E ∪ F) ≠ 0 इसलिए E और F परस्पर अपवर्जी नहीं है।

प्रश्न 17.
घटनाएँ A और B इस प्रकार हैं कि P(A) = 0.42, P(B) = 0.48 और P(A और B) = 0.16, ज्ञात कीजिए:
(i) P(A – नहीं)
(ii) P (B- नहीं)
(iii) P(A या B)
हल:
P(A) = 0.42, P(B) = 0.48.
P(A और B) = P(A ∩ B) = 0.16
(i) P(A – नहीं) = P(A’) = 1 – P(A) = 1 – 0.42 = 0.58.
(ii) P(B – नहीं) = P(B’) = 1 – P(B) = 1 – 0.48 = 0.52.
(iii) P(A या B) = P (A ∪ B) = (UPBoardSolutions.com) P(A) + P(B) – P(A ∩ B)
= 0.42 + 0.48 – 0.16 = 0.90 – 0.16 = 0.74.

UP Board Solutions

प्रश्न 18.
एक पाठशाला की कक्षा XI के 40% विद्यार्थी गणित पढ़ते हैं और 30% जीव विज्ञान पढ़ते हैं। कक्षा के 10% विद्यार्थी गणित और जीव विज्ञान दोनों पढ़ते हैं । यदि कक्षा का एक विद्यार्थी यादृच्छया चुना जाता है, तो प्रायिकता ज्ञात कीजिए कि वह गणित या जीव विज्ञान पढ़ता होगा।
हल:
एक पाठशाला के 40% विद्यार्थी गणित पढ़ते हैं।
गणित पढ़ने वाले विद्यार्थी की प्रायिकता P(M) = [latex s=2]\frac { 40 }{ 100 }[/latex] = 0.4
30% विद्यार्थी जीव विज्ञान पढ़ते हैं।
जीव विज्ञान पढ़ने वाले विद्यार्थी की प्रायिकता P(B) = [latex s=2]\frac { 30 }{ 100 }[/latex] = 0.3
10% विद्यार्थी गणित और जीव विज्ञान दोनों पढ़ते हैं।
गणित और जीव विज्ञान वाले विद्यार्थियों की प्रायिकता, P(M ∩B)
= [latex s=2]\frac { 10 }{ 100 }[/latex] = 0.1
अब एक विद्यार्थी यादृच्छया चुना गया हो, तब उस विद्यार्थी द्वारा गणित या जीव विज्ञान लिए गए विषय की प्रायिकता
P(M ∪ B) = P(M) + P(B) – P(M ∩ B) = 0.4 + 0.3 – 0.1 = 0.6

प्रश्न 19.
एक प्रवेश परीक्षा की दो परीक्षणों (Tests) के आधार पर श्रेणीबद्ध किया जाता है। किसी यादृच्छया चुने गए विद्यार्थी की पहले परीक्षण में उत्तीर्ण होने की प्रायिकता 0.8 है और दूसरे परीक्षण में उत्तीर्ण होने की प्रायिकता 0.7 है। दोनों में से कम से कम एक परीक्षण उत्तीर्ण करने की प्रायिकता 0.95 है। दोनों परीक्षणों को उत्तीर्ण करने की प्रायिकता क्या है?
हल:
माना A और B क्रमशः पहले और दूसरे परीक्षण में उत्तीर्ण होने को दर्शाते हैं।
P(A) = 0.8, P(B) = 0.7
कम से कम एक परीक्षण में उत्तीर्ण होने की (UPBoardSolutions.com) प्रायिकता = 1 – P(A ∩ B’) = 0.95
P(A’ ∩ B’) = 1 – 0.95 = 0.05.
A’ ∩ B’ = (A ∪ B)’ (डी-मोर्गन नियम से)
P(A’ ∩ B’) = P(A ∪ B)’ = 1 – P(A ∪ B) = 0.05
P(A ∪ B) = 1 – 0.05 = 0.95
P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
0.95 = 0.8 + 0.7 – P(A ∩ B)
P(A ∩ B) = 1.5 – 0.95 = 0.55
इस प्रकार दोनों परीक्षणों को उत्तीर्ण करने की प्रायिकता = 0.55.

प्रश्न 20.
एक विद्यार्थी के अंतिम परीक्षा के अंग्रेजी और हिन्दी दोनों विषयों को उत्तीर्ण करने की प्रायिकता 0.5 है और दोनों में से कोई भी विषय उत्तीर्ण न करने की प्रायिकता 0.1 है। यदि अंग्रेजी की परीक्षा उत्तीर्ण करने की प्रायिकता 0.75 हो तो हिन्दी की परीक्षा उत्तीर्ण करने की प्रायिकता क्या है?
हल:
माना E और H क्रमशः अंग्रेजी और हिन्दी में पास करने को दर्शाते हैं।
तब अंग्रेजी और हिन्दी दोनों परीक्षा में उत्तीर्ण होने की प्रायिकता
P(E ∩ H) = 0.5
दोनों में से कोई परीक्षा उत्तीर्ण न करने की प्रायिकता = P(E’ ∩ H’) = 0.1
P[(E U H)’] = 1 – P(E ∪ H) = 0.1
P(E ∪ H) = 1 – 0.1 = 0.9
अंग्रेजी परीक्षा में उत्तीर्ण होने की प्रायिकता = P(E) = 0.75
अतः P(E ∪H) = 0.9, P(E) = 0.75, P(E ∩ H) = 0.5
P(E ∪ H) = P(E) + P(H) – P(E ∩ H)
0.9 = 0.75 + P(H) – 0.5
P(H) = 0.9 + 0.5 – 0.75 = 1.4 – 0.75 = 0.65
अतः हिन्दी परीक्षा में उत्तीर्ण होने की प्रायिकता = 0.65.

UP Board Solutions

प्रश्न 21.
एक कक्षा के 60 विद्यार्थियों में से 30 ने एन.सी.सी. (NCC), 32 ने एन.एस.एस. (NSS) और 24 ने दोनों को चुना है। यदि इनमें से एक विद्यार्थी यादृच्छया चुना गया है तो प्रायिकता ज्ञात कीजिए कि
(i) विद्यार्थी ने एन.सी.सी. या एन.एस.एस. को चुना है।
(ii) विद्यार्थी ने न तो एन.सी.सी. और न ही एन.एस.एस. को चुना है।
(iii) विद्यार्थी ने एन.एस.एस. को चुना है किन्तु एन.सी.सी को नहीं चुना है।
हल:
माना A और B क्रमशः एन.सी.सी. और एन.एस.एस. चुनने की घटना को दर्शाते हैं।
विद्यार्थियों की कुल संख्या = 60
एन.सी.सी. चुनने वाले विद्यार्थियों की संख्या = 30
एन.सी.सी. चुनने की प्रायिकता P(A) = (UPBoardSolutions.com) [latex s=2]\frac { 30 }{ 60 }[/latex] = [latex s=2]\frac { 1 }{ 2 }[/latex]
एन.एस.एस. चुनने वाले विद्यार्थियों की संख्या = 32
एन.एस.ए. चुने जाने की प्रायिकता P(B) = [latex s=2]\frac { 32 }{ 60 }[/latex]
एन.सी.सी. और एन.एस.एस. चुनने वालों की संख्या = 24
एन.सी.सी. और एन.एस.एस. चुनने की प्रायिकता = [latex s=2]\frac { 24 }{ 60 }[/latex]
UP Board Solutions for Class 11 Maths Chapter 16 Probability Ex 16.3 21

अध्याय 16 पर विविध प्रश्नावली

प्रश्न 1.
एक डिब्बे में 10 लाले, 20 नीली व 30 हरी गोलियाँ रखी हैं। डिब्बे से 5 गोलियाँ यादृच्छया निकाली जाती हैं। प्रायिकता क्या है कि
(i) सभी गोलियाँ नीली हैं?
(ii) कम से कम एक गोली हरी है ?
हल:
एक डिब्बे में 10 लाल, 20 नीली तथा 30 हरी कुल 60 गोलियाँ हैं।
UP Board Solutions for Class 11 Maths Chapter 16 Probability 1
UP Board Solutions for Class 11 Maths Chapter 16 Probability 1.1

UP Board Solutions

प्रश्न 2.
ताश के 52 पत्तों की एक अच्छी तरह फेंटी गई गड्डी से 4 पत्ते निकाले जाते हैं। इस बात की क्या प्रायिकता है कि निकाले गए पत्तों में 3 ईंट और एक हुकुम का पत्ता है ?
UP Board Solutions for Class 11 Maths Chapter 16 Probability 2

प्रश्न 3.
एक पासे के दो फलकों में से प्रत्येक पर संख्या 1 अंकित है। तीन फलकों में प्रत्येक पर संख्या 2 अंकित है और एक फलक पर संख्या 3 अंकित है। यदि पासा एक बार फेंका जाता है, तो निम्नलिखित ज्ञात कीजिए (i) P(2)
(ii) P(1 या 3)
(ii) P(3 – नहीं)
हल:
पासे पर कुल संभावित परिणाम = 6
(i) 2 अंक 3 फलकों पर अंकित है।
2 प्राप्त करने के 3 तरीके हैं
UP Board Solutions for Class 11 Maths Chapter 16 Probability 3

UP Board Solutions

प्रश्न 4.
एक लाटरी में 10000 टिकट बेचे गए जिनमें दस समान इनाम दिए जाने हैं। कोई भी इनाम न मिलने की प्रायिकता क्या है यदि आप
(a) एक टिकटं खरीदते हैं
(b) दो टिकट खरीदते हैं
(c) 10 टिकट खरीदते हैं ?
हल:
टिकटों की संख्या जिन पर इनाम नहीं है = 10000 – 10 = 9990
कुल टिकटों की संख्या = 10000
UP Board Solutions for Class 11 Maths Chapter 16 Probability 4
UP Board Solutions for Class 11 Maths Chapter 16 Probability 4.1

UP Board Solutions

प्रश्न 5.
100 विद्यार्थियों में से 40 और 60 विद्यार्थियों के दो वर्ग बनाए गए हैं। यदि आप और आपका एक मित्र 100 विद्यार्थियों में हैं तो प्रायिकता क्या है कि
(a) आप दोनों एक ही वर्ग में हों।
(b) आप दोनों अलग-अलग वर्गों में हों।
हल:
माना दो वर्ग A और B हैं जिनमें क्रमशः 40 और 60 विद्यार्थी हैं।
(i) मान लीजिए दोनों विद्यार्थी वर्ग (UPBoardSolutions.com) A में आते हैं।
98 विद्यार्थियों में से 38 विद्यार्थी चुने जाते हैं।
UP Board Solutions for Class 11 Maths Chapter 16 Probability 5
UP Board Solutions for Class 11 Maths Chapter 16 Probability 5.1

प्रश्न 6.
तीन व्यक्तियों के लिए तीन पत्र लिखवाए गए हैं और प्रत्येक के लिए पता लिखा एक लिफाफा है। पत्रों को लिफाफों में यादृच्छया इस प्रकार डाला गया कि प्रत्येक लिफाफे में एक ही पत्र है। प्रायिकता ज्ञात कीजिए कि कम से कम एक पत्र अपने सही लिफाफे में डाला गया है।
हल:
मान लीजिए लिफाफों को A, B, C और संगत पत्रों को क्रमशः a, b, c से निरूपित किया गया है।
(i) एक पत्र उसके संगत लिफाफे में और दूसरे दो गलत लिफाफे में रखने के तरीके
(Aa, Bc, Cb), (Ac, Bb, Ca), (Ab, Ba, Cc)
(ii) यदि दो पत्र संगत (ठीक) लिफाफों में रखे गए हैं तो तीसरा भी संगत (ठीक) लिफाफे में होगा।
(iii) तीनों पत्र उनकै संगत (ठीक) लिफाफों में रखे जाए (Aa, Bb, Cc) एक तरीका है।
पत्र कम से कम एक संगत लिफाफे में रखे जाने के तरीके 3 + 1 = 4
तीन पत्रों को तीन लिफाफा में रखने के कुल तरीके = 3! = 6
कम से कम एक एत्र संगत लिफाफे में रखे जाने की प्रायिकता = [latex s=2]\frac { 4 }{ 6 }[/latex] = [latex s=2]\frac { 2 }{ 3 }[/latex]

UP Board Solutions

प्रश्न 7.
A और B दो घटनाएँ इस प्रकार हैं कि P(A) = 0.54, P(B) = 0.69 और P(A ∩ B) = 0.35, ज्ञात कीजिए:
(i) P(A ∪B)
(ii) P(A’ ∩ B’)
(iii) P(A ∩ B’)
(iv) P(B ∩ A’)
हल:
P(A) = 0.54, P(B) = 0.69, P(A ∩ B) = 0.35
(i) P(A ∪ B) = P(A) + P(B) – P(A ∩ B) = 0.54 + 0.69 – 0.35 = 0.88
(ii) P(A’ ∩ B’) = P[(A ∪ B)’] = 1 – P(A ∪ B) = 1 – 0.88 = 0.12.
(iii) P(A ∩ B’) = P(A) – P(A ∩ B) = 0.54- 0.35 = 0.19.
(iv) P(B ∩ A’) = P(B) – P(B ∩ A) = 0.69 (UPBoardSolutions.com) – 0.35 = 0.34.

प्रश्न 8.
एक संस्था के कर्मचारियों में से 5 कर्मचारियों का चयन प्रबन्ध समिति के लिए किया गया है। पाँच कर्मचारियों का ब्यौरा निम्नलिखित है:
UP Board Solutions for Class 11 Maths Chapter 16 Probability 8
इस समूह से प्रवक्ता पद के लिए यादृच्छया एक व्यक्ति का चयन किया गया। प्रवक्ता के पुरुष या 35 वर्ष से अधिक आयु का होने की प्रायिकता क्या है ?
हल:
माना A पुरुष के चयन और B व्यक्ति की आयु 35 वर्ष से अधिक को दर्शाते हैं।
पुरुषों की कुल संख्या = 3
35 वर्ष से अधिक आयु के कुल लोग = 2
35 वर्ष से अधिक आयु का पुरुष 1 है।
UP Board Solutions for Class 11 Maths Chapter 16 Probability 8.1

UP Board Solutions

प्रश्न 9.
यदि 0, 1, 3, 5 और 7 अंकों द्वारा 5000 से बड़ी चार अंकों की संख्या का यादृच्छया निर्माण किया गया हो तो पाँच से भाज्य संख्या के निर्माण की क्या प्रायिकता है जब:
(i) अंकों की पुनरावृत्ति नहीं की जाए ?
(ii) अंकों की पुनरावृत्ति की जाए ?
हल:
(i) जब अंकों की पुनरावृत्ति नहीं होती।
मान लीजिए अंकों के स्थानों को I, II, III, IV से निरूपित किया गया हैं।
5000 से बड़ी संख्या बनाने के लिए स्थान I पर 5 या 7 रखना होगा अर्थात स्थान I को भरने के तरीके = 2
अब 5 अंक शेष रह जाते हैं।
स्थान II, III और IV को 4, 3 व 2 तरीकों से भर सकते हैं।
5000 से बड़ी संख्याएँ = 4 x 3 x 2 = 24 = n(S)
5 से भाज्य संख्याएँ वे हैं जब इकाई (स्थान IV) (UPBoardSolutions.com) पर 0 या 5 हो। 5 को स्थान I पर तथा 0 को स्थान IV पर रखने के बाद 3 अंक बचते हैं। स्थान II और III, को 2 x 3 = 6 तरीकों से भरा जा सकता है।
इस प्रकार स्थान I पर जब 5 हो और IV पर 0 हो तो 6 संख्याएँ बनती हैं।
जब स्थान I पर 7 और स्थान IV पर 5 हो तो भी 6 संख्याएँ बनेंगी।
5000 से बड़ी और 5 से भाज्य संख्याएँ। = 6 + 6 + 6 = 18
अतः 5000 से बड़ी और 5 से भाज्य संख्याओं के बनने की प्रायिकता = [latex s=2]\frac { 18 }{ 24 }[/latex] = [latex s=2]\frac { 3 }{ 4 }[/latex]

(ii) जब पुनरावृत्ति की जा सकती है। स्थान I पर 5 या 7 रख सकते है जिससे संख्या 5000 से बड़ी बन सके।
स्थान I को 2 तरीकों से भर सकते हैं।
क्योंकि पुनरावृत्ति की अनुमति है तो प्रत्येक स्थान II, III, IV को 5 तरीकों से भर सकते हैं।
चारों स्थानों को भरने के तरीके या 5000 से बड़ी संख्याएँ = 2 x 5 x 5 x 5 = 250 = n(S)
संख्या यदि 5 से भाज्य है तो इकाई (IV) स्थान पुर 0 या 5 रखना होगा।
इसलिए इकाई के स्थान को 2 तरीकों से भर सकेंते हैं।
बीच के स्थान II और III को 5 x 5 तरीकों से भर सकते हैं।
इस प्रकार 5000 से बड़ी और 5 से भाज्य संख्याएँ = 2 x 5 x 5 x 2 = 100
5000 से बड़ी और 5 से भाज्य बनाने वाली संख्याओं की प्रायिकता = [latex s=2]\frac { 100 }{ 250 }[/latex] = [latex s=2]\frac { 2 }{ 5 }[/latex]

UP Board Solutions

प्रश्न 10.
किसी अटैची के ताले में चार चक्र लगे हैं। जिनमें प्रत्येक पर 0 से 9 तक 10 अंक अंकित हैं। ताला चार अंकों के एक विशेष क्रम (अंकों की पुनरावृत्ति नहीं) द्वारा ही खुलता है। इस बात की क्या प्रायिकता है कि कोई व्यक्ति अटैची खोलने के लिए सही क्रम का पता लगा ले।
हल:
प्रथम स्थान पर कोई अंक 10 तरीकों से ही लाया जा सकता है। यहाँ 0, 1, 2, …. 9 में से कोई भी अंक हो सकता है।
दूसरे, तीसरे व चौथे स्थान को 9 x 8 x 7 तरीकों से भरा जा सकता है।
इस प्रकार चार अंकों की संख्या (जबकि पुनरावृत्ति (UPBoardSolutions.com) नहीं की गई है) बनने के तरीके = 10 x 9 x 8 x 7 = 5040
ताले को खोलने के लिए सही संख्या केवल एक ही है।
अटैची को खोलने का सही क्रम ज्ञात करने की प्रायिकता = [latex s=2]\frac { 1 }{ 5040 }[/latex]

We hope the UP Board Solutions for Class 11 Maths Chapter 16 Probability (प्रायिकता) help you. If you have any query regarding UP Board Solutions for Class 11 Maths Chapter 16 Probability (प्रायिकता), drop a comment below and we will get back to you at the earliest.

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series (अनुक्रम तथा श्रेणी)

These Solutions are part of UP Board Solutions for Class 11 Maths. Here we have given UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series (अनुक्रम तथा श्रेणी).

प्रश्नावली 9.1

प्रश्न 1 से 6 तक के अनुक्रमों में प्रत्येक के प्रथम पाँच पद लिखिए, जिनका नाव पद दिया गया है।

प्रश्न 1.
an = n(n + 2).
हल:
an = n(n + 2)
n का मान 1, 2, 3, 4, 5 रखने पर
a1 = 1 x 3 = 3,
a2 = 2 x 4 = 8,
a3 = 3 x 5 = 15,
a4 = 4 x 6 = 24,
a5 = 5 x 7 = 35
अतः दिए गए अनुक्रम के पाँच पद 3, 8, 15, 24, 35 हैं।

UP Board Solutions

प्रश्न 2.
an = [latex]\frac { n }{ n + 1 }[/latex]
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 2

प्रश्न 3.
an = 2n
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 3

प्रश्न 4.
an = [latex]\frac { 2n – 3 }{ 6 }[/latex]
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 4

UP Board Solutions

प्रश्न 5.
an = (-1)n-1 5n+1.
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 5

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 6

निम्नलिखित प्रश्न 7 से 10 तक के अनुक्रमों में प्रत्येक का वांछित पद ज्ञात कीजिए, जिनका शव पद दिया गया है:

UP Board Solutions

प्रश्न 7.
an = 4n -3, a17, a24
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 7
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 7.1

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 8

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 9

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 10

UP Board Solutions

प्रश्न 11 से 13 तक प्रत्येक अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए:

प्रश्न 11.
a1 = 3, an = 3an-1 + 2 सभी n > 1 के लिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 11

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 12

UP Board Solutions

प्रश्न 13.
a1 = a2 = 2, an = an-1 – 1, जहाँ n > 2.
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 13

प्रश्न 14.
Fibonacci अनुक्रम निम्नलिखित रूप में परिभाषित है :
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 14
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1 14.1

UP Board Solutions

प्रश्नावली 9.2

प्रश्न 1.
1 से 2001 तक के विषम पूर्णाकों का योग ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 1

प्रश्न 2.
100 तथा 1000 के मध्य उन सभी प्राकृत संख्याओं का योगफल ज्ञात कीजिए जो 5 के गुणज हों।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 2
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 2.1

UP Board Solutions

प्रश्न 3.
किसी समांतर श्रेणी में प्रथम पद 2 है तथा प्रथम पांच पदों का भागफल, अगले पांच पदों के योगफल का एक चौथाई है। दर्शाइए कि 20वाँ पद -112 है।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 3

UP Board Solutions

प्रश्न 4.
समांतर श्रेढी – 6, [latex]\frac { -11 }{ 2 }[/latex] , 5 …… के कितने पदों का योगफल – 25 है?
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 4
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 4.1

UP Board Solutions

प्रश्न 5.
किसी समांतर श्रेढ़ी का p वाँ पद [latex]\frac { 1 }{ q }[/latex] तथा p वा पद [latex]\frac { 1 }{ p }[/latex] हो, तो सिद्ध कीजिए कि प्रथम pq पदों का योग [latex]\frac { 1 }{ 2 }[/latex] (pq + 1) होगा, जहाँ p ≠ q.
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 5
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 5.1

प्रश्न 6.
यदि किसी समांतर श्रेणी 25, 22, 19, ……. के कुछ पदों का योगफल 116 है तो अंतिम पद ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 6
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 6.1

UP Board Solutions

प्रश्न 7.
उस समांतर श्रेणी के n पदों को योगफल ज्ञात कीजिए जिसका वाँ पद 5k + 1 हैं।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 7

UP Board Solutions

प्रश्न 8.
यदि किसी समांतर श्रेणी के n पदों का योगफले pn + qn² है, जहाँ p तथा q अचर हों तो सार्वअंतर ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 8

UP Board Solutions

प्रश्न 9.
दो समांतर श्रेणियों के n पदों के योगफल का अनुपात 5n + 4 : 9n + 6 हो, तो उनके 18 वें पदों का अनुपात ज्ञात करो।
हल:
मान लीजिए समातर श्रेणियों के प्रथम पद a1, a2, तथा सार्वअंतर d1 और d2 हैं। यदि Sn, S’n उनके संगत योगफल हैं। T18 और T’18 उनके संगत 18वें पद हैं।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 9
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 9.1

UP Board Solutions

प्रश्न 10.
यदि किसी समांतर श्रेणी के प्रथम p पदों का योग, प्रथम q पदों के योगफल के बराबर हो, तो प्रथम (p + q) पदों का योगफल ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 10
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 10.1

प्रश्न 11.
यदि किसी समांतर श्रेणी के प्रथम p, q, r पदों का योगफल क्रमशः a, b, c, हो तो सिद्ध कीजिए कि:
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 11
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 11.1

UP Board Solutions

प्रश्न 12.
किसी समांतर श्रेणी के m तथा n पदों के योगफलों का अनुपात m² : n² है तो दर्शाइए कि वे m तथा n वें पदों का अनुपात (2m – 1) : (2n -1) है।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 12

UP Board Solutions

प्रश्न 13.
यदि किसी समांतर श्रेणी के पदों का योगफल 3n² + 5n है तथा इसका m वाँ पद 164 है तो m का मान ज्ञात करो।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 13

प्रश्न 14.
8 और 26 के बीच ऐसी 5 संख्याएँ डालिए ताकि प्राप्त अनुक्रम एक समांतर श्रेणी बन जाए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 14

UP Board Solutions

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 15
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 15.1

प्रश्न 16.
m संख्याओं को 1 तथा 31 के बीच रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी है। और 7 वीं एवं (m – 1) वीं संख्याओं का अनुपात 5 : 9 है, तो m का मान ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 16
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 16.1

UP Board Solutions

प्रश्न 17.
एक व्यक्ति ऋण का भुगतान 100 रुपए की प्रथम किश्त से शुरू करता है। यदि वह प्रत्येक किश्त में 5 रुपए प्रति माह बढ़ाता है, तो 30 वीं किश्त की राशि क्या होगी?
हुल:
पहली किश्त a = 100 रु.
हर माह किश्त में बढ़ोत्तरी = सार्व अंतर = 5 रु.
30वीं किश्त = समांतर श्रेणी का 30वाँ पद = a + (n – 1)d
= 100 + (30 – 1) 5 = 100 + 29 x 5 = 100 + 145 = 245 रु.

प्रश्न 18.
एक बहुभुज के दो क्रमिक अंतः कोणों का अंतर 5° है। यदि सबसे छोटा कोण 120° हो, तो बहुभुज की भुजाओं की संख्या ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 18
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.2 18.1

UP Board Solutions

प्रश्नावली 9.3

प्रश्न 1.
गुणोत्तर श्रेणी [latex]\frac { 5 }{ 2 }[/latex] , [latex]\frac { 5 }{ 4 }[/latex] , [latex]\frac { 5 }{ 8 }[/latex] ……. का 20 वाँ तथा n वाँ पद ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 1

प्रश्न 2.
उस गुणोत्तर श्रेणी का 12 वाँ पद ज्ञात कीजिए, जिसका 8वाँ पद 192 तथा सार्व अनुपात 2 है।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 2

प्रश्न 3.
किसी गुणोत्तर श्रेणी का 5 वाँ, 8 वाँ तथा 11 वाँ पदक्रमशः p, q तथा s हैं, तो दिखाइए कि q² = ps.
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 3

प्रश्न 4.
किसी गुणोत्तर श्रेणी का चौथा पद उसके दूसरे पद का वर्ग है तथा प्रथम पद -3 है, तो 7वाँ पद ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 4

प्रश्न 5.
अनुक्रमों को कौन सा पद:
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 5
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 5.1
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 5.2

UP Board Solutions

प्रश्न 6.
x के किस मान के लिए संख्याएँ [latex]\frac { -2 }{ 7 }[/latex], x , [latex]\frac { -7 }{ 2 }[/latex] गुणोत्तर श्रेणी में हैं?
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 6

प्रश्न 7 से 10 तक प्रत्येक गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

प्रश्न 7.
0.15, 0.015, 0.0015, ….. 20 पदों तक।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 7

UP Board Solutions

प्रश्न 8.
√7, √21, 3√7, …. n पदों तक।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 8

प्रश्न 9.
1, -a, -a2, -a3 …. n पदों तक (यदि a ≠ -1).
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 9

प्रश्न 10.
x3 , x5, x7 … n पदों तक (यदि x ≠ ±1).
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 10

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 11

UP Board Solutions

प्रश्न 12.
एक गुणोत्तर श्रेणी के तीन पदों का योगफल [latex]\frac { 39 }{ 10 }[/latex] है तथा उनका गुणनफल 1 है। सार्व अनुपात तथा पदों को ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 12

प्रश्न 13.
मुणोत्तर श्रेणी 3, 32, 33, …… के कितने पद आवश्यक हैं ताकि उनका योगफल 120 हो जाए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 13
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 13.1

प्रश्न 14.
किसी गुणोत्तर श्रेणी के प्रथम तीन पदों का योगफल 16 है तथा अगले 3 पदों का योग 128 है तो गुणोत्तर श्रेणी का प्रथम पद, सार्व अनुपात तथा n पदों का योगफल ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 14
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 14.1

UP Board Solutions

प्रश्न 15.
एक गुणोत्तर श्रेणी का प्रथम पद a = 729 तथा 7वाँ पद 64 है, तो S7 ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 15

प्रश्न 16.
एक गुणोत्तर श्रेणी को ज्ञात कीजिए, जिसके प्रथम दो पदों का योगफल -4 है तथा 5वाँ पद तृतीय पद को 4 गुना है।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 17
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 16.1

UP Board Solutions

प्रश्न 17.
यदि किसी गुणोत्तर का 4 वाँ, 10 वाँ तथा 16 वाँ पद क्रमशः x, y तथा z हैं, तो सिद्ध कीजिए कि x, y, z गुणोत्तर श्रेणी में हैं।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 16

प्रश्न 18.
अनुक्रम 8, 88, 888, ……. के n पदों का योग ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 18

प्रश्न 19.
अनुक्रम 2, 4, 8, 16, 32, तथा 128, 32, 8, 2, [latex]\frac { 1 }{ 2 }[/latex] के संगत पेदीं के गुणनफल से बने अनुक्रम का योगफल ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 19

UP Board Solutions

प्रश्न 20.
दिखाइए कि अनुक्रम a, ar, ar2,….arn-1 तथा A, AR, AR2, … ARn-1 के संगत पदों के गुणनफल से बना अनुक्रमे गुणोत्तर श्रेणी होती है तथा सार्व अनुपात ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 20

प्रश्न 21.
ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेणी में हो, जिसका तीसरा पद प्रथम पद से 9 अधिक हो, तथा दूसरा पद चौथे पद से 18 अधिक हो।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 21
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 21.1

UP Board Solutions

प्रश्न 22.
यदि किसी गुणोत्तर श्रेणी का p वाँ, q वाँ तथा r वाँ पद क्रमशः a, b, तथा c हो, तो सिद्ध कीजिए कि aq-r . br-p – cp-q = 1.
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 22

प्रश्न 23.
यदि किसी गुणोत्तर श्रेणी का प्रथम तथा n वाँ पद a तथा b हैं, एवं P, n पदों का गुणनफल हो, तो सिद्ध कीजिए कि P2 = (ab)n.
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 23
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 23.1

प्रश्न 24.
दिखाइए कि एक गुणोत्तर श्रेणी के प्रथम n पदों का योगफल तथा (n + 1)वें पद से (2n) वें पद तक के पदों के योगफल का अनुपात [latex]\frac { 1 }{ { r }^{ n } }[/latex] हैं।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 24

UP Board Solutions

प्रश्न 25.
यदि a, b, c तथा d गुणोत्तर श्रेणी में हैं तो दिखाइए कि (a² + b² + c²) (b² + c² + d²) = (ab + bc + cd)².
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 25

प्रश्न 26.
ऐसी दो संख्याएँ ज्ञात कीजिए जिनको 3 और 81 के बीच रखने पर प्राप्त अनुक्रमः एक गुणोत्तर श्रेणी बन जाए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 26

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 27
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 27.1

UP Board Solutions

प्रश्न 28.
दो संख्याओं का योगफल उनके गुणोत्तर माध्य का 6 गुना है तो दिखाइए कि संख्याएँ (3 + 2√2) : (3 – 2√2) के अनुपात में हैं।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 28
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 28.1

UP Board Solutions

प्रश्न 29.
यदि A तथा G दो धनात्मक संख्याओं के बीच क्रमशः समांतर तथा गुणोत्तर माध्य हों, तो सिद्ध करो कि संख्याएँ A ≠ √{(A + G)(A – G)} हैं।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 29

UP Board Solutions

प्रश्न 30.
किसी कल्चर में बैक्टीरिया की संख्या प्रत्येक घण्टे के पश्चात् दुगुनी हो जाती है। यदि प्रारंभ में उसमें 30 बैक्टीरिया उपस्थित थे, तो बैक्टीरिया की संख्या दूसरे, चौथे तथा n वें घण्टों बाद क्या होगी ?
हल:
प्रारम्भ में बैक्टीरिया की संख्या a = 30
प्रत्येक घण्टे बाद बैक्टीरिया की संख्या दुगुनी हो जाती है।
सार्व अनुपात = 2
दूसरे घण्टे बाद बैक्टीरिया संख्या = ar2 = 30 x 22 = 120
चौथे घण्टे बाद बैक्टीरिया संख्या = ar4 = 30 x 24 = 480
n वें घण्टे बाद बैक्टीरिया संख्या = arn = 30 x 2n

प्रश्न 31.
500 रुपए धनराशि 10% वार्षिक चक्रवृद्धि ब्याज पर 10 वर्षों बाद क्या हो जाएगी, ज्ञात कीजिए ?
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 31
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 31.1

प्रश्न 32.
यदि किसी द्विघात समीकरण के मूलों के समांतर माध्य एवं गुणोत्तर माध्य क्रमशः 8 तथा 5 हैं, तो द्विधातीय समीकरण ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.3 32

प्रश्नावली 9.4

प्रश्न 1 से 7 तक प्रत्येक श्रेणी के n पदों का योग ज्ञात कीजिए:

प्रश्न 1.
1 x 2 + 2 x 3 + 3 x 4 + 4 x 5 +….
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 1

UP Board Solutions

प्रश्न 2.
1 x 2 x 3 + 2 x 3 x 4 + 3 x 4 x 5 + …….
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 2

प्रश्न 3.
3 x 1² + 5 x 2² + 7 x 3² + …….
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 3
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 3.1

UP Board Solutions

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 4

प्रश्न 5.
5² + 6² + 7² +… 20².
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 5
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 5.1

UP Board Solutions

प्रश्न 6.
3 x 8 + 6 x 11 + 9 x 14+…..
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 6

प्रश्न 7.
1² + (1² + 2²) + (1² + 2² + 3²) + ….
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 7
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 7.1

UP Board Solutions

प्रश्न 8 से 10 तक प्रत्येक श्रेणी के n पदों का योग ज्ञात कीजिए जिसका वाँ पद दिया है।

प्रश्न 8.
n (n + 1) (n + 4).
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 8

प्रश्न 9.
n² + 2n
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 9
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 9.1

प्रश्न 10.
(2n – 1)²
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.4 10

UP Board Solutions

अध्याय 9 पर विविध प्रश्नावली

प्रश्न 1.
दर्शाइए कि किसी समांतर श्रेढ़ी के (m + n) वें तथा (m – n) वें पदों का योग m वें पद को दुगुना है।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 1

प्रश्न 2.
यदि किसी समांतर श्रेढ़ी की तीन संख्याओं का योग 24 है तथा उनका गुणनफल 440 है तो संख्याएँ ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 2
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 2.1

प्रश्न 3.
माना कि किसी समांतर श्रेढ़ी के n, 2n तथा 3n पदों का योगफल क्रमशः S1, S2 तथा S3 हैं, तो दिखाइए कि S3 = 3(S2 – S1).
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 3

UP Board Solutions

प्रश्न 4.
200 और 400 के मध्य आने वाली ने सभी संख्याओं का योगफल ज्ञात कीजिए जो 7 से विभाजित है।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 4
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 4.1

प्रश्न 5.
1 से 100 तक आने वाले ने सभी पूर्णाकों का योगफल ज्ञात कीजिए जो 2 या 5 से विभाजित हों।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 5

UP Board Solutions

प्रश्न 6.
दो अंकों की उन सभी संख्याओं का योगफल ज्ञात कीजिए, जिनको 4 से विभाजित करने पर शेषफल 1 हो।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 6

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 7

प्रश्न 8.
गुणोचर श्रेढ़ी के कुछ पदों का योग 315 है, उसका प्रथम पद तथा सार्व अनुपात क्रमशः 5 और 2 हैं। अंतिम पद तथा पदों की संख्या ज्ञात करो।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 8

प्रश्न 9.
किसी गुणोत्तर श्रेढ़ी का प्रथम पद 1 है। तीसरे एवं पाँचवें पदों का योग 90 हो, तो गुणोत्तर श्रेढ़ी को सार्व अनुपात ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 9.1

UP Board Solutions

प्रश्न 10.
किसी गुणोत्तर श्रेढ़ी के तीन पदों का योग 56 है। यदि हम क्रम से इन संख्याओं में से 1, 7, 21 घटाएँ तो हमें एक समांतर श्रेढी प्राप्त होती है। संख्याएँ ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 10
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 10.1
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 10.2

UP Board Solutions

प्रश्न 11.
किसी गुणोत्तर श्रेढ़ी के पदों की संख्या सम है। यदि उसके सभी पदों का योगफल, विषम स्थान पर रखे पदों के योगफल को 5 गुना है, तो सार्व अनुपात ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 11

प्रश्न 12.
एक समांतर श्रेढ़ी के प्रथम चार पदों का योगफल 56 है। अंतिम चार पदों का योगफल 112 है। यदि इसका प्रथम पद 11 है, तो पदों की संख्या ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 12
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 12.1

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 13

UP Board Solutions

प्रश्न 14.
किसी गुणोत्तर श्रेढ़ी में S, n पदों का योग, P उनका गुणनफल तथा R उनके व्युत्क्रमों का योग हो तो सिद्ध कीजिए कि PRn = Sn
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 14
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 14.1

प्रश्न 15.
किसी समांतर श्रेढ़ी का p वाँ, q वाँ, r वाँ पद क्रमशः a, b, c हैं, तो सिद्ध कीजिए : (q – r) a + (r – p) b + (p – q) c = 0.
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 15
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 15.1

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 16

UP Board Solutions

प्रश्न 17.
यदि a, b, c, d गुणोत्तर श्रेढ़ी में हैं, तो सिद्ध कीजिए कि (an + bn), (bn + cn), (cn + dn) गुणोत्तर श्रेढ़ी में हैं।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 17

प्रश्न 18.
यदि x² – 3x + p = 0 के मूल a तथा b हैं तथा? x² – 12x + q = 0 के मूल c तथा d हैं, जहाँ a, b, c, d गुणोत्तर श्रेढ़ी के रूप में हैं। सिद्ध कीजिए कि (q + p) : (q – p) = 17 : 15.
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 18
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 18.1

UP Board Solutions

प्रश्न 19.
दो धनात्मक संख्याओं a और 6 के बीच समांतर माध्य तथा गुणोत्तर मध्य का अनुफ्त m : n है। दर्शाइए कि
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 19
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 19.1

प्रश्न 20.
यदि a, b, c समांतर श्रेढ़ी में हैं; b, c, d गुणोत्तर श्रेढ़ी में हैं तथा [latex]\frac { 1 }{ c }[/latex] , [latex]\frac { 1 }{ d }[/latex] , [latex]\frac { 1 }{ e }[/latex] समांतर श्रेढ़ी में हैं, तो सिद्ध कीजिए कि a, c, e गुणोत्तर श्रेढ़ी में हैं।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 20

प्रश्न 21.
निम्नलिखित श्रेढ़ियों के n पदों का योग ज्ञात कीजिए:
(i) 5 + 55 + 555 + ……
(ii) 0.6 + 0.66 + 0.666 + …..
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 21
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 21.1

UP Board Solutions

प्रश्न 22.
श्रेढ़ी का 20वाँ पद ज्ञात कीजिए : 2 x 4 + 4 x 6 + 6 x 8 + ….. + n पदों तक
हल:
2, 4, 6, ….. का 20 वाँ पद = 2n = 2 x 20 = 40
4, 6, 8…… का 20 वाँ पद = 4 + 19 x 2 = 4 + 38 = 42
2 x 4 + 4 x 6 + 6 x 8 +…… का 20 वाँ पद = 40 x 42 = 1680.

प्रश्न 23.
श्रेणी 3 + 7 + 13 + 21 + 31 + ….. के n पदों का योगफल ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 23
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 23.1

UP Board Solutions

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 24
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 24.1

प्रश्न 25.
निम्नलिखित श्रेणियों के n पदों का योग ज्ञात कीजिए:
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 25
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 25.1

UP Board Solutions

UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 26
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 26.1

प्रश्न 27.
कोई किसान एक पुराने ट्रैक्टर को 12000 रु. में खरीदता है। वह 6000 रू. नकद भुगतान करता है। और शेष राशि को 500 रू की वार्षिक किस्त के अतिरिक्त उस धन पर जिसका भुगतान न किया गया हो 12% वार्षिक ब्याज भी देता है। किसान को ट्रैक्टर की कुल कितनी कीमत देनी पड़ेगी?
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 27
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 27.1
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 27.2

UP Board Solutions

प्रश्न 28.
शमशाद अली 22000 रू में एक स्कूटर खरीदता है। वह 4000 रू नकद देता है और शेष राशि को 1000 रू वार्षिक किस्त के अतिरिक्त उस धन पर जिसका भुगतान न किया गया हो 10% वार्षिक ब्याज भी देता है। उसे स्कूटर के लिए कुल कितनी राशि चुकानी पड़ेगी?
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 28
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 28.1

प्रश्न 29.
एक व्यक्ति अपने चार मित्रों को पत्र लिखता है। वह प्रत्येक को उसकी नकल करके चार दूसरे व्यक्तियों को भेजने का निर्देश देता है, तथा जिनसे यह भी करने को कहता है कि प्रत्येक पत्र प्राप्त करने वाला व्यक्ति इस श्रृंखला को जारी रखे। यह कल्पना करके कि श्रृंखला न टूटे तो 8वें पत्रों के समूह भेजे जाने तक कितना डाक खर्च होगा जबकि एक पत्र का डाक खर्च 50 पैसे है।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 29

UP Board Solutions

प्रश्न 30.
एक आदमी ने एक बैंक में 10000 रूपये 5% वार्षिक साधारण ब्याज पर जमा किया। जब से रकम बैंक में जमा की गई तब से, 15वें वर्ष में उसके खाते में कितनी रकम हो गई तथा 20 वर्षों बाद कुल कितनी रकम हो गयी, ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 30

प्रश्न 31.
एक निर्माता घोषित करता है कि उसे की मशीन जिसका मूल्य 15625 रूपये है, हर वर्ष 20% की दर से उसका अवमूल्यन होता है। 5 वर्ष के बाद मशीन का अनुमानित मूल्य ज्ञात कीजिए।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 31

UP Board Solutions

प्रश्न 32.
किसी कार्य को कुछ दिनों में पूरा करने के लिए 150 कर्मचारी लगाए गए। दूसरे दिन 4 कर्मचारियों ने काम छोड़ दिया, तीसरे दिन चार और कर्मचारियों ने काम छोड़ दिया तथा इस प्रकार अन्य। अब कार्य पूरा करने में 8 दिन अधिक लगते हैं, तो दिनों की संख्या ज्ञात कीजिए, जिनमें कार्य पूरा किया गया।
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 32
UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series 32.1

We hope the UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series (अनुक्रम तथा श्रेणी) help you. If you have any query regarding UP Board Solutions for Class 11 Maths Chapter 9 Sequences and Series (अनुक्रम तथा श्रेणी), drop a comment below and we will get back to you at the earliest.