Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2

Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 द्विघात समीकरण

निम्नलिखित समीकरणों को हल कीजिए
प्रश्न 1.
x4 – 8x2 – 9 = 0
हलः
दिया हुआ समीकरण
x4 – 8x2 – 9 = 0 …(1)
x2 = y समीकरण (1) में रखने पर
y2 – 8y – 9 = 0
⇒ y2 – 9y + y – 9 = 0
⇒ y(y – 9) + 1(y – 9) = 0
⇒ (y – 9)(y + 1) = 0
⇒ y = 9, – 1
अब y = 9 ⇒ x2 = 9
⇒ x = ±3
तथा y = – 1 = i2
⇒ x2 = i2
⇒ x = ±i
अतः समीकरण के (UPBoardSolutions.com) हल = (±3, ±i)

UP Board Solutions

प्रश्न 2.
4x4 – 5x2 + 1 = 0
हलः
दिया गया समीकरण
4x4 – 5x2 + 1 = 0
4(x2)2 – 5x2 + 1 = 0 …(1)
x2 = y, समीकरण (1) में रखने पर
4y2 – 5y + 1 = 0
⇒ 4y2 – 4y – y + 1 = 0
⇒ 4y(y – 1) – 1(y – 1) = 0
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 1

UP Board Solutions

प्रश्न 3.
[latex]\left[\frac{\boldsymbol{x} – \boldsymbol{a}}{\boldsymbol{x} + \boldsymbol{a}}\right]^{2} – 5\left[\frac{\boldsymbol{x} – \boldsymbol{a}}{\boldsymbol{x} + \boldsymbol{a}}\right][/latex] + 6 = 0 (UPBoardSolutions.com)
हलः
दिया गया समीकरण
[latex]\left[\frac{\boldsymbol{x} – \boldsymbol{a}}{\boldsymbol{x} + \boldsymbol{a}}\right]^{2} – 5\left[\frac{\boldsymbol{x} – \boldsymbol{a}}{\boldsymbol{x} + \boldsymbol{a}}\right][/latex] + 6 = 0
समीकरण (1) में [latex]\frac{x – a}{x + a}[/latex] = y रखने पर
y2 – 5y + 6 = 0
⇒ y2 – 2y – 3y + 6 = 0
⇒ y(y – 2) – 3(y – 2) = 0
⇒ (y – 2) (y – 3) = 0
⇒ y = 2, 3
जब y = 2 ⇒ [latex]\frac{x – a}{x + a}[/latex] = 2
x – a = 2(x + a)
2x + 2a = x – a
2x – x = – a – 2a = – 3a
x = – 3a

जब y = 3 ⇒ [latex]\frac{x – a}{x + a}[/latex] = 3
x – a = 3(x + a)
3x + 3a = x – a
3x – x = – a – 3a
2x = – 4a
x = – 2a
अतः समीकरण के हल क्रमशः – 2a, – 3a हैं।

प्रश्न 4.
x – 2 – 12 = – x – 1
हलः
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 2
∴ दिया गया समीकरण y 2 + y – 12 = 0
y2 + 4y – 3y – 12 = 0
y(y + 4) – 3(y + 4) = 0
(y – 3)(y + 4) = 0
यदि y – 3 = 0, तब y = 3
और यदि y + 4 = 0, तब y = – 4
y = 3 लेने पर, [latex]\frac{1}{x}[/latex] = 3
x = [latex]\frac{1}{3}[/latex]
y = – 4 लेने पर, [latex]\frac{1}{x}[/latex] = – 4
x = [latex] – \frac{1}{4}[/latex]

UP Board Solutions

प्रश्न 5.
(x2 – 3x + 3)2 – (x – 1)(x – 2) = 7
हलः
दिया गया समीकरण (UPBoardSolutions.com)
(x2 – 3x + 3)2 – (x – 1)(x – 2) = 7
(x2 – 3x + 2 + 1)2 – (x2 – 3x + 2) – 7 = 0 …(1)
समीकरण (1) में x2 – 3x + 2 = y रखने पर
(y + 1)2 – y – 7 = 0
y2 + 1 + 2y – y – 7 = 0
y2 + y – 6 = 0
y2 + 3y – 2y – 6 = 0
y(y + 3) – 2(y + 3) = 0
(y – 2)(y + 3) = 0
y = 2, – 3
जब y = 2 ⇒ x2 – 3x + 2 = 2
x2 – 3x = 0
x(x – 3) = 0
x= 0, 3
जब y = – 3 ⇒ x2 – 3x + 2 = – 3
x2 – 3x + 2 + 3 = 0
x2 – 3x + 5 = 0
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 3

UP Board Solutions

प्रश्न 6.
(x2 – 5x)2 – 30(x2 – 5x) – 216 = 0
हलः
दिया गया समीकरण
(x2 – 5x)2 – 30(x2 – 5x) – 216 = 0 …(1)
समीकरण (1) में x2 – 5x = y रखने पर
y2 – 30y – 216 = 0
y2 – 36y + 6y – 216 = 0
y(y – 36) + 6(y – 36) = 0
(y + 6)(y – 36) = 0
y = – 6, 36
जब y = – 6 ⇒ x2 – 5x = – 6
x2 – 5x + 6 = 0
x2 – 3x – 2x + 6 = 0
x(x – 3) – 2(x – 3) = 0
(x – 2)(x – 3) = 0
x = 2, 3
जब y = 36 ⇒ x2 – 5x = 36
x2 – 5x – 36 = 0
x2 – 9x + 4x – 36 = 0
x(x – 9) + 4(x – 9) = 0
(x + 4)(x – 9) = 0
x = – 4, 9

प्रश्न 7.
(x2 – 5x + 7)2 – (x – 2)(x – 3) = 1
हलः
दिया गया (UPBoardSolutions.com) समीकरण
(x2 – 5x + 7)2 – (x – 2)(x – 3) = 1
{(x2 – 5x + 6) + 1}2 – (x2 – 5x + 6) = 1 …(1)
समीकरण (1) में x2 – 5x + 6 = y रखने पर
(y + 1)2 – y = 1
y2 + 2y + 1 – y – 1 = 0
y2 + y = 0
y(y + 1) = 0
y = 0, – 1
जब y = 0 ⇒ x2 – 5x + 6 = 0
x2 – 2x – 3x + 6 = 0
x(x – 2) – 3(x – 2) = 0
x = 2, 3
जब y = – 1 ⇒ x2 – 5x + 6 = – 1
x2 – 5x + 7 = 0
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 4

UP Board Solutions

प्रश्न 8.
12x4 – 56x3 + 89x2 – 56x + 12 = 0
हलः
दिया गया समीकरण
12x4 – 56x3 + 89x2 – 56x + 12 = 0
दोनों पक्षों में x2 से भाग करने पर,
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 5

UP Board Solutions
x2 + [latex]\frac{1}{x^{2}}[/latex] + 2 = y2
x2 + [latex]\frac{1}{x^{2}}[/latex] = y2 – 2
समीकरण (1) में x2 + (UPBoardSolutions.com) [latex]\frac{1}{x^{2}}[/latex] = y2 – 2 तथा x + [latex]\frac{1}{x}[/latex] = y
12(y2 – 2) – 56y + 89 = 0
12y2 – 24 – 56y + 89 = 0
12y2 – 56y + 65 = 0
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 6
2(x2 + 1) = 5x
2x2 – 5x + 2 = 0
2x2 – x – 4x + 2 = 0
x(2x – 1) – 2(2x – 1) = 0
(x – 2)(2x – 1) = 0
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 7
6(x2 + 1) = 13x
6x2 – 13x + 6 = 0
6x2 – 9x – 4x + (UPBoardSolutions.com) 6 = 0
3x(2x – 3) – 2(2x – 3) = 0
(3x – 2)(2x – 3) = 0
x = [latex]\frac{2}{3}, \frac{3}{2}[/latex]

प्रश्न 9.
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 8
हलः
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 9
2(y2 + 1) = 5y
2y2 – 5y + 2 = 0
2y2 – 4y – y + (UPBoardSolutions.com) 2 = 0
2y(y – 2) – 1(y – 2) = 0
(y – 2)(2y – 1) = 0
जब y – 2 = 0 तब जब y = 2
जब 2y – 1 = 0 तब y = [latex]\frac{1}{2}[/latex]
y = 2 लेने पर, [latex]\frac{3 x+1}{x+1}[/latex] = 2
3x + 1 = 2(x + 1)
3x + 1 = 2x + 2
3x – 2x = 2 – 1
x = 1
y = [latex]\frac{1}{2}[/latex] लेने पर, [latex]\frac{3 x+1}{x+1}=\frac{1}{2}[/latex]
2(3x + 1) = x + 1
6x + 2 = x + 1
6x – x = 1 – 2
5x = -1
x = [latex]-\frac{1}{5}[/latex]

UP Board Solutions

प्रश्न 10.
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 10
हलः
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 11
6(y2 + 1) = 13y
6y2 – 13y + 6 = 0
6y2 – 4y – 9y + 6 = 0
2y(3y – 2) – 3(3y – 2) (UPBoardSolutions.com) = 0
(2y – 3)(3y – 2) = 0
जब 2y – 3 = 0 तब y = [latex]\frac{3}{2}[/latex]
जब 3y – 2 = 0 तब y = [latex]\frac{2}{3}[/latex]
y = [latex]\frac{3}{2}[/latex] लेने पर, [latex]\frac{x}{1+x}=\frac{3}{2}[/latex]
3(1 + x) = 2x
3 + 3x = 2x
3x – 2x = -3
x = – 3
y = [latex]\frac{2}{3}[/latex] लेने पर, [latex]\frac{x}{1+x}=\frac{2}{3}[/latex]
3x = 2(1 + x)
3x = 2 + 2x
3x – 2x = 2
x = 2

UP Board Solutions

प्रश्न 11.
[latex]\frac{4 x-1}{4 x+1}+\frac{4 x+1}{4 x-1}=\frac{10}{3}[/latex]
हलः
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 12
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 13
3(y2 + 1) = 10y
3y2 – 10y + 3 = 0
3y2 – 9y – y + 3 = 0
3y(y – 3) – 1(y – 3) = 0
(y – 3)(3y – 1) = 0
जब y – 3 = 0, तब y = 3
जब 3y – 1 = 0, तब y = 1/3 (UPBoardSolutions.com)
y = 3 लेने पर, [latex]\frac{4 x-1}{4 x+1}=\frac{3}{1}[/latex]
3(4x + 1)= 4x – 1
12x + 3 = 4x – 1
12x – 4x = – 1 – 3
8x = – 4
x = [latex]-\frac{4}{8}=-\frac{1}{2}[/latex]
y = [latex]\frac{1}{3}[/latex] लेने पर, [latex]\frac{4 x-1}{4 x+1}=\frac{1}{3}[/latex]
⇒ 3(4x – 1) = 4x + 1
12x – 3 = 4x + 1
12x – 4x = 1 + 3
8x = 4
⇒ x = [latex]\frac{4}{8}=\frac{1}{2}[/latex]
अतः x = [latex]\pm \frac{1}{2}[/latex]

प्रश्न 12.
51+x + 51-x = 26
हलः
दिया गया समीकरण 5·5x + 5·5-x = 26
5(5x + 5-x) = 26
5x + 5-x = [latex]\frac{26}{5}[/latex]
माना 5x = y तब 5-x = [latex]\frac{1}{y}[/latex]
∴ दिया गया समीकरण y + [latex]\frac{1}{y}[/latex] = [latex]\frac{26}{5}[/latex]
[latex]\frac{y^{2}+1}{y}=\frac{26}{5}[/latex]
5(y2 + 1) = 26y
5y2 + 5 – 26y = 0
5y2 – 26y + 5 = 0
5y2 – 25y – y + 5 = 0
5y(y – 5) – 1(y – 5) = 0
(y – 5)(5y – 1) = 0
जब y – 5 = 0 तब y = 5
तथा जब 5y – 1 = 0 तब y = [latex]\frac{1}{5}[/latex]
y = 5 लेने पर, 5x = 5 = 51
x = 1
y = [latex]\frac{1}{5}[/latex] लेने पर, 5x = 5-1
x = -1

UP Board Solutions

प्रश्न 13.
5x+1 + 52-x = 53 + 1
हलः
दिया गया समीकरण
5x+1 + 52-x = 53 + 1
5x ·5 + [latex]\frac{5^{2}}{5^{x}}[/latex] = 53 + 1
5·5x · 5x + 52 = 53 · 5x + 5x
माना 5x = y 5y · y + 52 = 125y + y
5y2 – 126y + 52 = 0 (UPBoardSolutions.com)
5y2 – 126y + 25 = 0
5y2 – 1y – 125y + 25 = 0
y(5y – 1) – 25(5y – 1) = 0
(y – 25)(5y – 1) = 0
y = 25 या y = [latex]\frac{1}{5}[/latex]
यदि y = 25, तब 5x = y = 25
5x = 52
तब x = 2 (घातों की तुलना करने पर)
तथा यदि y = [latex]\frac{1}{5}[/latex] = 5-1
तब 5x = y
5x = 5-1
x = – 1 (घातों की तुलना करने पर)
अतः x = – 1, 2

प्रश्न 14.
3x + 3-x – 2 = 0
हलः
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 14
y2 + 1 – 2y = 0
(y – 1)2 = 0
y = 1, 1
y = 1 लेने पर, 3x = 1
3x = 30
x = 0

प्रश्न 15.
22x+8 – 8·2x+2 + 1 = 0
हलः
दिया गया (UPBoardSolutions.com) समीकरण
22x+4-4 – 8·2x+2+1 = 0
22x+4 · 24 – 8·2x+2 + 1 = 0
16·22(x+2) – 8·2x+2 + 1 = 0
माना 2x+2 = y
∴ दिया गया समीकरण
16yx – 8y + 1 = 0
16yx – 4y – 4y + 1 = 0
4y(4y – 1) – 1(4y – 1) = 0
(4y – 1)(4y – 1) = 0
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 15
दोनों पक्षों में घातों की तुलना करने पर
x + 2 = – 2
x = – 2 – 2
x = – 4

UP Board Solutions

प्रश्न 16.
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 16
हलः
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 17
y2 + 4 = 5y
y2 – 5y + 4 = 0
y2 – y – 4y + 4 = 0
y(y – 1) – 4(y – 1) = 0
(y – 1)(y – 4) = 0
जब y – 1 = 0 तब y = 1
जब y – 4 = 0 तब y = 4
y = 1 लेने पर, [latex]\sqrt{3 x^{2}+1}[/latex] = 1
3x2 + 1 = 1
3x2 = 0
x2 = 0 ⇒ x = 0, 0
y = 4 लेने पर, [latex]\sqrt{3 x^{2}+1}[/latex] = 4 ⇒ 3x2 + 1 = 16
3x2 = 16 – 1 = 15
⇒ 3x2 = 15
⇒ x2 = ±[latex] \sqrt{{5}} [/latex]
⇒ x = + 15

UP Board Solutions

प्रश्न 17.
2x = 42x-1
हलः
दिया गया समीकरण (UPBoardSolutions.com) 22 = 42x-1
2x = [latex]\frac{4^{2 x}}{4}[/latex]
4·22 = 42x
4·2x = (22)2x
4·2x = (22x)2
4·2x = 22x22x = (2x)2(2x)2
माना 2x = y तब, 4y = yx·yx
4y = y4
(4y – y4) = 0
y(4 – y3) = 0
y = 0 या 4 – y3 = 0
4 = y3
∴ y3 = 4
y = 41/3 = (22)1/3
यदि y = 0 तब 2x = 0, x = 0 (अमान्य)
y = 41/3 तब 2x = 41/3
2x = 22/3
दोनों ओर घातों की तुलना करने पर
x = [latex]\frac{2}{3}[/latex]

प्रश्न 18.
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 18
हलः
दिया गया समीकरण
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 19
8y2 – 1 = 2y
8y2 – 2y – 1 = 0
8y2 – 4y + 2y – 1 = 0
4y(2y – 1) + 1(2y – 1) = 0
(2y – 1)(4y + 1) = 0
जब 2y – 1 = 0 तब y = [latex]\frac{1}{2}[/latex]
जब 4y + 1 = 0 तब y = [latex]-\frac{1}{4}[/latex]
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 20
4x = x + 3
4x – x = 3
3x = 3
x = 1
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.2 21
16x = x + 3
16x – x = 3
15x = 3 ⇒ x = [latex]\frac{3}{15}=\frac{1}{5}[/latex]
परन x= [latex]\frac{1}{5}[/latex] समीकरण को सन्तुष्ट नहीं करती है अतः x = 1

Balaji Publications Mathematics Class 10 Solutions

Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3

Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 दो चर वाले रैखिक समीकरण युग्म

निम्नलिखित रैखिक समीकरण निकाय को (UPBoardSolutions.com) ब्रज – गुणन विधि द्वारा हल कीजिए।
a1x + b1y + 1 = 0
a2x + b2y + c1 = 0
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 1

प्रश्न 1.
2x + y – 35 = 0; 3x + 4y – 65 = 0
हलः
समीकरण 2x + y – 35 = 0 ……..(1)
3x + 4y – 65 = 0 …(2)
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 2

UP Board Solutions

प्रश्न 2.
x + y = a + b; ax (UPBoardSolutions.com) – by = a2 – b2
हलः
x + y = a + b
या x + y – (a + b) = 0 …………..(1)
तथा ax – by = a2 – b2
या ax – by – (a2 – b2) = 0 ……….(2)
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 3
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 4
अत: x = a, y = b

UP Board Solutions

प्रश्न 3.
a(x + y) + b(x – y) = a2 – ab + b2; a(x + y) – b(x – y)= a2 + ab + b2
हलः
a(x + y) + b(x – y) = a2 – ab + b2
या a(x + y) + b(x – y) – (UPBoardSolutions.com) (a2 – ab + b2) = 0 …….(1)
तथा a(x + y) – b(x – y) = a2 + ab + b2
या a(x + y) – b(x – y) – (a2 + ab + b2)= 0 ……..(2)
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 5
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 6

UP Board Solutions

प्रश्न 4.
ax + by = a2; bx + ay = b2
हलः
समीकरण, ax + by = a2
या ax + by – a2 = (UPBoardSolutions.com) 0 ……….(1)
तथा bx + ay = b2
या bx + ay – b2 = 0 ……(2)
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 7
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 8

UP Board Solutions

प्रश्न 5.
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 9
हलः
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 10
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 11

UP Board Solutions

प्रश्न 6.
2ax + 3 by = a + 2b; 3ax + 2by = 2a + b
हलः
2ax + 3by = a + 2b (UPBoardSolutions.com)
या 2ax + 3by – (a + 2b) = 0 ………..(1)
तथा 3ax + 2by = 2a + b
या 3ax + 2by – (2a + b) = 0 ………..(2)
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 12

UP Board Solutions

प्रश्न 7.
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 13
हलः
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 14
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 15

UP Board Solutions

प्रश्न 8.
6(ax + by) = 3a + 2b; 6(bx – ay) = 3b – 2a
हलः
समीकरण 6(ax + by) (UPBoardSolutions.com) = 3a + 2b
या 6ax + 6by – (3a + 2b) = 0 ………(1)
तथा 6 (bx – ay) = 3b – 2a
या 6bx – 6ay – (3b – 2a) = 0 ………….(2)
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 16

UP Board Solutions

प्रश्न 9.
[latex]\frac{a x}{b}-\frac{b y}{a}[/latex] =(UPBoardSolutions.com)  a + b; ax – by = 2ab
हलः
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 17Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 18

UP Board Solutions

प्रश्न 10.
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 19
हलः
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 20
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 21

UP Board Solutions

प्रश्न 11.
mx – ny = m2 + n2; x + y = 2m (UPBoardSolutions.com)
हलः
mx – ny = m2 + n2
या mx – ny – (m2 + n2) = 0 ………(1)
तथा x + y = 2m
या x + y – 2m = 0 …….(2)
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.3 22

Balaji Publications Mathematics Class 10 Solutions

Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1

Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 द्विघात समीकरण

Ex 4.1 Quadratic Equations गुणनखण्ड विधि (Factorization Method)

निम्नलिखित समीकरणों को गुणनखण्ड विधि द्वारा हल करें।
प्रश्न 1.
(i) 9x2 – 3x – 2 = 0
(ii) 8x2 – 22x – 21 = 0
हल:
(i) 9x2 – 3x – 2 = 0
9x2 – 6x + 3x – 2 = 0
3x(3x – 2) + 1(3x – 2) = (UPBoardSolutions.com) 0
(3x – 2)(3x + 1) = 0
यदि 3x – 2 = 0, तब x = [latex]\frac{2}{3}[/latex]
यदि 3x + 1 = 0, तब x = [latex]-\frac{1}{3}[/latex]
अतः x = [latex]\frac{2}{3}[/latex] व [latex]-\frac{1}{3}[/latex]

UP Board Solutions

(ii) 8x2 – 22x – 21 = 0
8x2 – 28x + 6x – 21 = 0
4x(2x – 7) + 3(2x – 7) = 0
(2x – 7)(4x + 3) = (UPBoardSolutions.com) 0
यदि 2x – 7 = 0, तब x = [latex]\frac{7}{2}[/latex]
यदि 4x + 3 = 0, तब x = [latex]-\frac{3}{4}[/latex]
अत: x = [latex]\frac{7}{2}[/latex] व [latex]-\frac{3}{4}[/latex]

प्रश्न 2.
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 1
हल:
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 2
4x2 + 6x – x – 3 + 3x + 9 = 0
4x2 + 10x + 6 = 0
4x2 + 6x + 4x + 6 = 0
2x(2x + 3) + 2(2x + 3) = 0
(2x + 3)(2x + 2) = (UPBoardSolutions.com) 0
यदि 2x + 3 = 0 तब x = [latex]-\frac{3}{2}[/latex]
यदि 2x + 2 = 0 तब x = [latex]-\frac{2}{2}[/latex] = -1
अतः x = [latex]-\frac{3}{2}[/latex] व -1

UP Board Solutions

प्रश्न 3.
4x2 – 2(a2 + b2)x + a2b2 = 0
हलः
4x2 – 2(a2 + b2)x + a2b2 = 0
4x2 – 2a2x – 2b2x + a2b2 = 0
2x(2x – a2) – b2(2x – a2) = 0
(2x – a2)(2x – b2)
यदि 2x – a2 = 0 तब x = [latex]\frac{a^{2}}{2}[/latex]
यदि 2x – b2 = 0 तब x = [latex]\frac{b^{2}}{2}[/latex]
अतः x = [latex]\frac{a^{2}}{2}[/latex] व [latex]\frac{b^{2}}{2}[/latex]

प्रश्न 4.
(i) a2b2x2 + b2x – a2x – 1 = 0
(ii) x2 + [latex]\left(\frac{\boldsymbol{a}}{\boldsymbol{a}+\boldsymbol{b}}+\frac{\boldsymbol{a}+\boldsymbol{b}}{\boldsymbol{a}}\right)[/latex]x + 1 = 0
हलः
(i) a2b2x2 + b2x – ax – 1 = 0
b2x(a2x + 1) – 1(a2x + 1) = 0
(a2x + 1)(b2x – 1) = 0
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 3

UP Board Solutions

प्रश्न 5.
(i) abx2 + (b2 – ac)x – bc = 0 (UPBoardSolutions.com)
(ii) x2 + [latex]\left(\boldsymbol{a}+\frac{\mathbf{1}}{\boldsymbol{a}}\right)[/latex]x + 1 = 0
(iii) [latex]\frac{x-1}{x-2}+\frac{x-3}{x-4}=\frac{10}{3}[/latex], x ≠ 2, x ≠ 4
(iv) 3x2 – 2[latex] \sqrt{{6}} [/latex]x + 2 = 0 (NCERT)
(v) [latex]\frac{1}{x-1}-\frac{1}{x+5}=\frac{6}{7}[/latex], x ≠ 1, -5
(vi) [latex]x+\frac{2}{x}[/latex] = 3, x ≠ 0 (NCERT)
(vii) [latex]\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}[/latex], x ≠ 4, 7 (NCERT)
हलः
(i) abx2 + (b2 – ac)x – bc = 0
abx2 + b2x – acx – bc = 0
bx(ax + b) – c(ax + b) = 0
(ax + b) (bx – c) = 0
ax + b = 0 तथा bx – c = 0
x = [latex]-\frac{b}{a}[/latex], (UPBoardSolutions.com) x = [latex]\frac{c}{b}[/latex]
अतः [latex]-\frac{b}{a}[/latex], व x = [latex]\frac{c}{b}[/latex]
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 4
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 5

UP Board Solutions

प्रश्न 6.
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 6
हलः
(i)
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 7
a(x2 – cx – bx + bc) + b(x2 – cx + ax + ac) – 2c(x2 – bx – ax + ab) = 0
ax2 – acx – abx + abc + bx2 – bcx – abx + abc – 2cx2 + 2bcx + 2acx – 2abc = 0
ax2 + bx2 – 2cx2 – 2abx + bcx + acx = 0
x[ax + bx – 2cx – 2ab + bc + ac] = 0
∴ x = 0

UP Board Solutions
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 8
8x2 – 40x + 48 = 3x2 – 8x
8x2 – 40x + 48 – 3x2 + 8x = 0
5x2 – 32x + 48 = 0
5x2 – 20 x – 12x + 48 = 0
x(x – 4) – 12(x – 4) = 0
(x – 4)(5x – 12) = 0
(x – 4) = 0 तथा 5x – 12 = 0
x = 4 , x = [latex]\frac{12}{5}[/latex]
अतः x = 4 व [latex]\frac{12}{5}[/latex]

(iii)
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 9
5x – 8x – 12 + 6x2 + 9x = 0
6x2 + 6x – 12 = 0
6(x2 + x – 2) = 0
x2 + x – = 0
x2 + 2x – x – 2 = 0
x(x + 2) – 1(x + 2) = 0
(x + 2)(x – 1) = 0
x + 2 = 0 तथा x – 1 = 0
x = – 2 , x = 1
अतः x = -2 व 1

UP Board Solutions

(iv)
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 10
या 16x = 75 – 3x2
या 16x – 75 + 3x2 = 0
3x2 + 16 x – 75 = 0
या 3x2 + 25x – 9x – 75 = 0
या x(3x + 25) – 3(3x + 25) = 0
या (3x + 25)(x – 3) = 0
3x + 25 = 0 तथा x – 3 = 0 (UPBoardSolutions.com)
x = [latex]-\frac{25}{3}[/latex], x = 3
अतः x = [latex]-\frac{25}{3}[/latex], 3

UP Board Solutions

(v)
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 11
30x2 + 35x – 15 – 19x2 + 42x + 15 = 0
11x2 + 77x = (UPBoardSolutions.com) 0
11x(x + 7) = 0
11x = 0 तथा x + 7 = 0
x = 0 , x = -1
अतः x = 0, – 7

(vi)
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 12
29x2 – 29 = 28x2 + 4x – 7x – 1
29x2 – 29 = 28x2 – 3x – 1
29x2 – 29 – 28x2 + 3x + 1 = 0
x2 + 3x – 28 = 0
x2 + 7x – 4x – 28 = 0
x(x + 7) – 4(x + 7) = 0
(x + 7)(x – 4) = 0
x + 7 = 0 तथा x – 4 = 0
x = – 7 , x = 4
अतः x = – 7, 4

UP Board Solutions

प्रश्न 7.
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 13
हलः
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 14
3y2 – 11y – 4 = 0
3y2 – 12y + y – 4 = 0
3y(y – 4) + 1(y – 4) = 0
(y – 4)(3y + 1) = (UPBoardSolutions.com) 0
y – 4 = 0 तथा 3y + 1 = 0
y = 4 , y = [latex]-\frac{1}{3}[/latex]
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 15

UP Board Solutions
10x2 – 80x + 150 = 6x2 – 42x + 66
10x2 – 80x + 150 – 6x2 + 42x – 66 = 0
4x2 – 38x + 84 = 0
2(2x2 – 19x + 42) = 0
2x2 – 19x + 42 = 0
2x2 – 12x – 7x + 42 = 0
2x(x – 6) – 7(x – 6) = 0
(x – 6)(2x – 7) = 0
x – 6 = 0 तथा 2x – 7 = 0
x = 6 , x = [latex]\frac{7}{2}[/latex]
अत: x = 6, [latex]\frac{7}{2}[/latex]

(iii)
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 16
(2a + b + 2x)(bx + 2ax + ab) = 2abx
2abx + 4a2x + 2a2b + b2x + 2abx + ab2 + 2bx2 + 4ax2 + 2abx – 2abx = 0
4ax2 + 2bx2 + 4a2x + b2x + 4abx + 2a2b + ab2 = 0
2x2(2a + b) + x(4a2 + b2 + 4ab) + ab(2a + b) = 0
2x2(2a + b) + x(2a + b)2 + ab(2a + b) = 0
(2a + b)[2x2 + x(2a + b) + ab] = 0
2x2 + 2ax + bx + ab = 0
2x(x + a) + b(x + a) = 0
(x + a)(2x + b) = 0
x + a = 0 तथा 2x + b = 0
x = – a , x = [latex]-\frac{b}{2}[/latex]
अतः x = -a, [latex]-\frac{b}{2}[/latex]

UP Board Solutions

Ex 4.1 Quadratic Equations पूर्ण वर्ग द्वारा हल (Solution by Completing the Square)

पूर्ण वर्ग बनाकर हल करने की विधि से निम्नलिखित (UPBoardSolutions.com) द्विघात समीकरणों को हल कीजिए

प्रश्न 8.
(i) 2x22 – 5x + 3 = 0 (NCERT)
(ii) 5x2 – 6x – 2 = 0 (NCERT)
(iii) 4x2 + 4bx – (a2 – b2) = 0
(iv) x2 – ([latex] \sqrt{{3}} [/latex] + 1)x + [latex] \sqrt{{3}} [/latex] = 0
(v) a2x2 – 3abx + 2b2 = 0 (NCERT)
हलः
(i) 2x22 – 5x + 3 = 0
x2 का गुणांक = 2 से समीकरण को भाग करने पर,
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 17
अब x के गुणांक के आधे का वर्ग करके दोनों पक्षों में जोड़ने पर,
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 18
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 19
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 20

UP Board Solutions
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 21
UP Board Solutions

प्रश्न 9.
पूर्ण वर्ग बनाने वाली विधि का प्रयोग करके, (UPBoardSolutions.com) सिद्ध कीजिए कि समीकरण 4x2 + 3x + 5 = 0 के मूल वास्तविक नहीं हैं। (NCERT)
हलः
4x2 + 3x + 5 = 0
4 से भाग देने पर,
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 22
∵ दायाँ पक्ष ऋणात्मक है। [latex]\left(x+\frac{3}{8}\right)^{2}[/latex], x के किसी भी वास्तविक मान के लिए ऋणात्मक नहीं हो सकता है।
∴. दी गई समीकरण के मूल वास्तविक नहीं है।
यही सिद्ध करना था।

UP Board Solutions

Ex 4.1 Quadratic Equations द्विघात सूत्र के प्रयोग द्वारा (By using the Quadratic Formula)

द्विघात सूत्र का प्रयोग करके निम्नलिखित (UPBoardSolutions.com) समीकरणों को हल कीजिए-

प्रश्न 10.
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 23
हलः
(i) Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 24
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 25
4(x2 + 3x + 2) = (3x + 4)(x + 4) (UPBoardSolutions.com)
4x2 + 12x + 8 = 3x2 + 12x + 4x + 16
4x2 + 12x + 8 – 3x2 – 12x – 4x – 16 = 0
x2 – 4x – 8 = 0
द्विघात समीकरण ax2 + bx + c = 0 से तुलना करने पर,
a = 1, b = – 4, c = – 8
द्विघात सूत्र (श्रीधराचार्य सूत्र) से,
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 26

(ii)
2x2 – 2[latex] \sqrt{{2}} [/latex]x + 1 = 0
द्विघात समीकरण ax2 + bx + c = 0 से तुलना करने पर,
a = 2, b = – 2[latex] \sqrt{{2}} [/latex], c = 1
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 27

UP Board Solutions

(iii) [latex] \sqrt{{2}} [/latex]. x2 + 7x + 5[latex] \sqrt{{2}} [/latex] = 0
द्विघात समीकरण ax2 + bx + c = 0 से (UPBoardSolutions.com) तुलना करने पर,
a = [latex] \sqrt{{2}} [/latex], b = 7, c = 5[latex] \sqrt{{2}} [/latex]
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 28
Ex 4.1 Quadratic Equations विविध प्रश्न (Miscellaneous Problems)

प्रश्न 11.
निम्नलिखित. समीकरणों को गुणनखण्ड (UPBoardSolutions.com) विधि द्वारा हल करें
(i) 2x2 + x – 6 = 0 (NCERT)
(ii) 100x2 – 20x + 1 = 0 (NCERT)
(iii) 2x2 – x + [latex]\frac{1}{8}[/latex] = 0 (NCERT)
हलः
(i)
2x2 + x – 6 = 0
2x2 + 4x – 3x – 6 = 0
2x(x + 2) – 3(x + 2) = 0
(x + 2)(2x – 3) = 0
x + 2 = 0 तथा 2x – 3 = 0
x = – 2, x = [latex]\frac{3}{2}[/latex]
अतः x= – 2, [latex]\frac{3}{2}[/latex]

(ii) 100x2 – 20x + 1 = 0
100x2 – (10 + 10)x + 1 = 0
100x2 – 10x – 10x + 1 = 0
10x (10x – 1) – 1(10x – 1) = 0
(10x – 1)(10x – 1) = 0
10x – 1 = 0, तथा 10x – 1 = 0
x = [latex]\frac{1}{10}[/latex], x = [latex]\frac{1}{10}[/latex]
अतः x = [latex]\frac{1}{10}[/latex], [latex]\frac{1}{10}[/latex]

Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 29
⇒ 16x2 – 8x + 1 = 0
⇒ 16x2 – 4x – 4x + 1 = 0
⇒ 4x (4x – 1) – 1(4x – 1) = 0
⇒ (4x – 1)(4x – 1) = 0
4x – 1 = 0 तथा 4x – 1 = 0
x = [latex]\frac{1}{4}[/latex], x = [latex]\frac{1}{4}[/latex]
अत: x = [latex]\frac{1}{4}[/latex], [latex]\frac{1}{4}[/latex]

प्रश्न 12.
x के लिए हल कीजिए – 12abx2 – (9a2 – 8b2)x – 6ab = 0
हलः
12abx2 – (9a2 – 8b2)x – 6ab = 0
12abx2 – 9a2x + 8b2x – 6ab = 0
3ax(4bx – 3a) + 2b (4bx – 3a) = 0
(4bx – 3a) (3ax + 2b) = 0
4bx – 3a = 0 तथा 3ax + 2b = 0
x = [latex]\frac{3a}{4b}[/latex], x = [latex]-\frac{2b}{3a}[/latex]
अतः x [latex]\frac{3a}{4b}[/latex], [latex]-\frac{2b}{3a}[/latex]

UP Board Solutions

प्रश्न 13.
समीकरण 4x2 – 2x + [latex]\frac{1}{4}[/latex] = 0 (UPBoardSolutions.com) के मूल, पूर्ण वर्ग बनाने वाली विधि द्वारा ज्ञात कीजिए। (NCERT)
हलः
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 30

प्रश्न 14.
x के लिए हल कीजिए – 4x2 – 4a2x + a4 – b4 = 0
हलः
4x2 – 4a2x + a4 – b4 = 0
4x2 – (2a2 + 2b2)x – (2a2 – 2b2)x + (a2)2 – (b2)2 = 0
4x2 – 2(a2 + b2)x – 2(a2 – b2)x + (a + b)(a2 – b2)= 0.
2x{2x – (a2 + b2)} – (a2 – b2){2x – (a2 + b2)} = 0
{2x – (a2 + b2)} {2x – (a2 – b2)} = 0
2x – (a2 + b2) = 0 तथा 2x – (a2 – b2) = 0
x = [latex]\frac{a^{2}+b^{2}}{2}[/latex], x = [latex]\frac{a^{2}-b^{2}}{2}[/latex]
अत: x = [latex]\frac{a^{2}+b^{2}}{2}[/latex], [latex]\frac{a^{2}-b^{2}}{2}[/latex]

UP Board Solutions

प्रश्न 15.
x के लिए हल कीजिए – 9x2 – 9(a + b)x + (2a2 + 5ab + 2b2) = 0
हलः
9x2 – 9(a + b)x + (2a2 + 5ab + 2b2) = 0
द्विघात समीकरण ax2 + bx + c = 0 से तुलना करने (UPBoardSolutions.com) पर,
a = 9, b = – 9(a + b), c = 2a2 + 5ab + 2b2
द्विघात सूत्र (श्रीधराचार्य सूत्र) से,
Balaji Class 10 Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 31
Balaji Publications Mathematics Class 10 Solutions

Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2

Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 दो चर वाले रैखिक समीकरण युग्म

Ex 3.2 Pair of Linear Equation in Two Variables अतिलघु उत्तरीय प्रश्न (Very Short Answer Type Questions)

निम्नलिखित रैखिक समीकरण (UPBoardSolutions.com) निकाय को हल कीजिए –

प्रश्न 1.
31x + 47y = 15, 47x + 31y = 63
हलः
समीकरण
31x + 47y = 15 …..(1)
और 47x + 31y = 63
विलोपन विधि से,
समी० (1) में 17 तथा समी० (2) को 31 से गुणा करने पर,
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 1
y का मान समी० (1) में रखने पर,
31x + 47 × ( – 1) = 15
31x – 47 = 15
31x = 15 + 47 (UPBoardSolutions.com)
31x = 62
x = [latex]\frac{62}{31}[/latex] ⇒ x = 2
अत: x = 2, y = – 1

UP Board Solutions

प्रश्न 2.
3x + 4y + 7 = 0, 5x – 7y – 2 = 0
हलः
समीकरण 3x + 4y + 7 = 0
3x + 4y = – 7 ….. (1)
और 5x – 7y – 2 = 0
या 5x – 7y = 2 ….. (2)
विलोपन विधि से, समी० (1) को 5 तथा समी० (2) को 3 से गुणा करने पर,
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 2
y = [latex]-\frac{41}{41}[/latex]
⇒ y = – 1
y का मान समी० (1) में (UPBoardSolutions.com) रखने पर,
3x + 4 × ( – 1) = – 7
3x – 4 = – 7
3x = – 7 + 4
3x = – 3
x = [latex]-\frac{3}{3}[/latex]
⇒ x = – 1
अतः x = – 1, y = – 1

UP Board Solutions

प्रश्न 3.
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 3
हलः
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 4
अतः x = 1, y = 3

प्रश्न 4.
2x + 3y = 18; x – 2y = 2
हलः
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 5
y का मान समी० (2) (UPBoardSolutions.com) में रखने पर,
x – 2 × 2 = 2
x – 4 = 2
x = 2 + 4 ⇒ x = 6
अतः x = 6 व y = 2

UP Board Solutions

प्रश्न 5.
3x – 5y – 4 = 0, 9x = 2y + 7
हलः
समीकरण 3x – 5y – 4 = 0
या 3x – 5y = 4 ….(1)
तथा 9x = 2y + 7
या 9x – 2y = 7 …….(2)
समी० (1) को 3 से गुणा करने पर,
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 6

UP Board Solutions

प्रश्न 6.
29x – 23y = 110 , 23x – 29y = 98
हल:
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 7
x का मान समी० (UPBoardSolutions.com) (1) में रखने पर,
29x – 23y = 110
29 × 3 – 23y = 110
87 – 23y = 110
– 23y = 110 – 87
– 23y = 23
y = – 1
अत: x = 3 तथा y = – 1 दी गई समीकरणों के अभीष्ट हल हैं।

UP Board Solutions

प्रश्न 7.
x + y = 5; 2x – 3y = 4 (NCERT)
हलः
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 8

UP Board Solutions

Ex 3.2 Pair of Linear Equation (UPBoardSolutions.com) in Two Variables लघु उत्तरीय प्रश्न (Short Answer Type Questions)

निम्नलिखित रैखिक समीकरण युग्म को प्रतिस्थापन या विलोपन विधि से हल कीजिए।
प्रश्न 8.
[latex]\frac{4}{x}[/latex] + 3y = 8; [latex]\frac{6}{x}[/latex] – 4y = – 5
हलः
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 9
अतः x = 2 व y = 2

प्रश्न 9.
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 10
हल:
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 11
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 12

UP Board Solutions

प्रश्न 10.
3x – [latex]\frac{y+7}{11}[/latex] + 2 (UPBoardSolutions.com) = 10 ; 2y + [latex]\frac{x+11}{7}[/latex] = 10
हलः
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 13
x = [latex]\frac{1389}{463}[/latex] = 3
x का मान समी० (2) में रखने पर
3 + 14y = 59
14y = 59 – 3
14y = 56
y = [latex]\frac{56}{14}[/latex] = 4
अतः x = 3, y = 4

प्रश्न 11.
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 14
हलः
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 15
अतः x = 4, y = 5

UP Board Solutions

प्रश्न 12.
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 17a
हलः
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 17b
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 17
x का मान समी० (6) में रखने पर
3 × 1 – 2y = 1
– 2y = 1 – 3
– 2y = – 2
2y = 2 या y = 1
अतः x = 1 तथा y =1

UP Board Solutions

प्रश्न 13.
99x + 101y = 499; 101x + (UPBoardSolutions.com) 99y = 501
हलः
99x + 101y = 499 …..(1)
101x + 99y = 501 …(2)
समी० (1) में 101 तथा समी० (2) में 99 से गुणा करने पर,
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 18
y का मान समी० (1) में रखने पर,
99x + 202 = 499
99x = 499 – 202 = 297
x = [latex]\frac{297}{99}[/latex] = 3
अतः x = 3, y = 2

प्रश्न 14.
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 19
(NCERT)
हल:
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 20
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 22
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 21

UP Board Solutions

प्रश्न 15.
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 23
(NCERT)
हल:
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 24
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 25

UP Board Solutions

प्रश्न 16.
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 26
हल:
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 27
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 28
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 29

UP Board Solutions

प्रश्न 17.
2(3x – y) (UPBoardSolutions.com) = 5xy; 2(x + 3y) = 5xy
हलः
समीकरण, 2(3x – y) = 5xy
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 30
[latex]\frac{6}{x}[/latex] = 5 – 2 = 3
3x = 6 या x = 2
अतः x = 2, y =1

UP Board Solutions

Ex 3.2 Pair of Linear Equation in Two Variables दीर्घ उत्तरीय प्रश्न (Long Answer Type Questions)

निम्नलिखित रैखिक समीकरण युग्म (UPBoardSolutions.com) को हल कीजिए-

प्रश्न 18.
[latex]\frac{2 x+5 y}{x y}=6 ; \frac{4 x-5 y}{x y}[/latex] = -3 x ≠ 0, y ≠ 0
हलः
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 31
अतः x = 1 व y = 2

UP Board Solutions

प्रश्न 19.
[latex]\frac{b x}{a}-\frac{a y}{b}[/latex] + a + b = 0; bx – ay + 2ab = 0
हल:
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 32
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 33
अतः x = – a, y = b

UP Board Solutions

प्रश्न 20.
[latex]\frac{b x}{a}-\frac{a y}{b}[/latex] (UPBoardSolutions.com) + a2 + b2 = 0; x + y = 2ab
हल:
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 34
x का मान समी० (2) में रखने पर,
ab + y = 2ab
y = 2ab – ab
y = ab
अत: x = ab, y = ab

UP Board Solutions

प्रश्न 21.
2(ax – by) + (a + 4b) = 0; 2(bx + ay) + (b – 4a) = 0
हलः
समीकरण 2(ax – by) + (a + 4b) = 0
या 2ax – 2by = – a – 4b ………(1)
तथा 2(bx + ay) + b – 4a = 0
या 2bx + 2ay = 4a – b
समी० (1) में a तथा समी० (2) में b से गुणा करने पर,
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 35

UP Board Solutions

प्रश्न 22.
[latex]\frac{x}{a}+\frac{y}{b}[/latex] = 2; ax – by = a2 – b2
हल:
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 36
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 37
अत: x = 1 व y = 2

प्रश्न 23.
6(ax + by) = 3a + 2b; 6(bx – ay) = 3b – 2a
हलः
समीकरण 6(ax + by) = 3a + 2b
या 6ax + 6by = 3a + 2b …………..(1)
तथा 6(bx – ay) (UPBoardSolutions.com) = 3b – 2a
या 6bx – 6ay = 3b – 2a
समी० (1) में b तथा समी० (2) में a से गुणा करने पर,
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 38
6ax = 3a + 2b – 2b
⇒ 6ax = 3a
x = [latex]\frac{3 a}{6 a}[/latex] ⇒ x = [latex]\frac{1}{2}[/latex]
अत: x = [latex]\frac{1}{2}[/latex] व y = [latex]\frac{1}{3}[/latex]

UP Board Solutions

प्रश्न 24.
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 39
हलः
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 40
y का मान समी० (1) में (UPBoardSolutions.com) रखने पर,
3x + 2 × 13 = 47
या 3x + 26 = 47
3x = 47 – 26 = 21
x = [latex]\frac{21}{3}[/latex] या x = 7
अत: x = 7, y = 13

प्रश्न 25.
152x – 378y = – 74; – 378x + 152y = – 604 (NCERT)
हलः
समीकरण 152x – 378y = – 74 ……….(1)
तथा – 378x + 152y = – 604 ……(2)
समी० (1) में 378 से तथा समी० (2) में 152 से गुणा करने पर,
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 41
y का मान समी० (1) में रखने पर,
152x – 378 × 1 = – 74
152x – 378 = – 74
152x = – 74 + 378
152x = 304
या x = [latex]\frac{304}{152}[/latex]
x = 2
अत: x = 2, y = 1

UP Board Solutions

प्रश्न 26.
[latex]\frac{4}{x}[/latex] (UPBoardSolutions.com) + 5y = 7 ; [latex]\frac{3}{x}[/latex] + 4y = 5
हलः
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 42
12 + 5y = 7
5y = 7 – 12
5y = – 5
y = [latex]-\frac{5}{5}[/latex] ⇒ y = – 1
अत: x = [latex]\frac{1}{3}[/latex] व y = – 1

प्रश्न 27.
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 43
हलः
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 44
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 45

UP Board Solutions

प्रश्न 28.
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 46
(NCERT)
हलः
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 47
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 48

UP Board Solutions

प्रश्न 29.
ax + by = c; bx + ay = 1 + c
हलः
ax + by = c …………..(1)
bx + ay = 1 + c …………(2)
समी0 (1) में b से तथा समी० (2) में a से गुणा करने पर,
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 49
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.2 50

Balaji Publications Mathematics Class 10 Solutions

Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5

Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 दो चर वाले रैखिक समीकरण युग्म

Ex 3.5 Pair of Linear Equation in Two Variables अतिलघु उत्तरीय प्रश्न (Very Short Answer Type Questions)

प्रश्न 1.
k का वह मान ज्ञात कीजिए जिसके लिए रैखिक (UPBoardSolutions.com) समीकरण निकाय x + 2y = 3; 5x + ky = 15 के अनंततः अनेक हल हैं।
हलः
समीकरण निकाय x + 2y = 3 ……(1)
तथा 5x + ky = 15 …(2)
∵ समीकरण निकाय के अनंततः अनेक हल हैं।
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 1
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 2

UP Board Solutions

प्रश्न 2.
a का मान ज्ञात कीजिए जिसके लिए समीकरण निकाय 9x – y = 25; 6x – ay = 3 का एक अद्वितीय हल है।
हलः
समीकरण निकाय 9x – y = 2 ….(1)
तथा 6x – 2y = 3 …(2)
∵ समीकरण निकाय एक अद्वितीय हल है
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 3

UP Board Solutions

प्रश्न 3.
a का मान ज्ञात कीजिए जिसके लिए (UPBoardSolutions.com) समीकरण युग्म 10x + 5y = a – 5; 20x + 10y – a = 0 के अनंततः अनेक हल हैं।
हलः
समीकरण युग्म 10x + 5y = a – 5 …(1)
तथा 20x + 10y – a = 0
या 20x + 10 y = a …(2)
∵ समीकरण के अनंततः अनेक हल हैं।
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 4

प्रश्न 4.
यदि एक समीकरण युग्म संगत है तब रेखाएँ भी संगत होंगी या नहीं?
हलः
यदि एक समीकरण युग्म संगत है तब रेखाएँ भी संगत होंगी।

UP Board Solutions

प्रश्न 5.
किस प्रकार के रैखिक समीकरण युग्म का आलेखीय हल नहीं होता।
हलः
यदि दोनों रेखायें समान्तर होंगी।

प्रश्न 6.
दो रैखिक समीकरणों का ग्राफ समानांतर (UPBoardSolutions.com) रेखाएँ हैं, तब रैखिक समीकरण युग्म के कितने हल होंगे?
हलः
कोई हल नहीं।

प्रश्न 7.
एक रैखिक समीकरण युग्म का अद्वितीय हल है। इसका आलेखीय रूप कितने बिन्दुओं पर प्रतिच्छेद करता है?
हलः
एक बिन्दु पर।

प्रश्न 8.
यदि दो रैखिक समीकरणों के आलेखीय रूप में प्रतिच्छेदक रेखाएँ हैं, तब रैखिक समीकरण युग्म के कितने हल हैं?
हलः
रैखिक समीकरण युग्म का 1 हल है।

UP Board Solutions

प्रश्न 9.
यदि [latex]\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}[/latex] तब समीकरण निकाय a1x + b1y + c1 = 0 और a2x + b2y + c2 = 0 के कितने हल हैं?
हलः
यदि [latex]\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}[/latex]
तब समीकरण निकाय का कोई हल नहीं है।

प्रश्न 10.
यदि [latex]\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}[/latex] तब समीकरण निकाय a1x + b1y + q = 0 और a2x + b2y + c2 = 0 के कितने हल हैं?
हलः
यदि [latex]\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}[/latex]
तब समीकरण निकाय का एक अद्वितीय हल है।

Ex 3.5 Pair of Linear Equation in Two Variables लघु उत्तरीय प्रश्न (Short Answer Type Questions)

प्रश्न 11.
k का मान ज्ञात कीजिए जिसके लिए निम्नलिखित (UPBoardSolutions.com) समीकरण निकाय का कोई हल नहीं है।
3x – y – 5 = 0; 6x – 2y – k = 0
हलः
समीकरण 3x – y – 5 = 0 …….(1)
तथा 6x – 2y – k = 0 ……….(2)
∵ समीकरण का कोई हल नहीं है
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 5
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 45

UP Board Solutions

प्रश्न 12.
निम्नलिखित रैखिक समीकरण निकाय को आलेखीय विधि से हल कीजिए-
(i) 2x – y = 4
3y – x = 3
(ii) x – 2y = – 3
2x + y = 4
(iii) x – y + 1 = 0
4x + 3y = 24
(iv) 3x – 2y – 1 = 0
2x – 3y + 6 = 0
(v) 3x – 5y = 19
3y – 7x + 1 = 0
(vi) 2x – 3y =1
3x – 4y = 1
हलः
(i) समीकरण 2x – y = 4 ………………(1)
तथा 3y – x = 3 …………(2)
समी० (1) से, 2x – 4 = y या y = 2x – 4
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 6

UP Board Solutions
उपरोक्त ग्राफ से स्पष्ट है कि दोनों रेखायें (UPBoardSolutions.com) बिन्दु (3, 2) पर प्रतिच्छेद करती हैं।
अतः x = 3, y = 2

(ii) समीकरण x – 2y = -3 ……..(1)
तथा 2x + y = 4 ……..(2)
समी० (1) से,
x – 2y = – 3
⇒ x + 3 = 2y
⇒ 2y = x + 3
⇒ y = [latex]\frac{x+3}{2}[/latex]
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 7
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 8

UP Board Solutions
उपरोक्त ग्राफ से स्पष्ट है कि दोनों रेखायें बिन्दु (1, 2) पर काटती हैं।
अतः x = 1, y = 2

(iii) समीकरण (UPBoardSolutions.com) x – y + 1 = 0 …….(1)
तथा 4x + 3y = 24 …………..(2)
समी० (1) से, x – y + 1 = 0
या y = x + 1
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 9
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 10

UP Board Solutions
उपरोक्त ग्राफ से स्पष्ट है कि दोनों रेखायें बिन्दु (3, 4) पर काटती हैं।
अत: x = 3, y = 4

(iv) समीकरण (UPBoardSolutions.com) 3x – 2y – 1 = 0 ………(1)
तथा 2x – 3y + 6 = 0 ………(2)
समी० (1) से, 3x – 2y – 1 = 0
⇒ 2y = 3x – 1
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 11
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 12
∵ दोनों रेखायें परस्पर बिन्दु B(3, 4) पर काटती हैं।
अतः x = 3 तथा y = 4

UP Board Solutions

(v) समीकरण 3x – 5y = 19 ……..(1)
तथा 3y – 7x + 1 = 0 ……..(2)
संमी० (1) से, 3x – 19 = 5y
या y = [latex]\frac{3 x-19}{5}[/latex]
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 13Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 14
उपरोक्त ग्राफ से स्पष्ट है कि (UPBoardSolutions.com) दोनों रेखायें बिन्दु (- 2, – 5) पर काटती हैं।
अत: x = – 2, y = – 5

(vi) समीकरण निकाय 2x – 3y = 1 …………..(1)
तथा 3x – 4y = 1 …………(2)
समी० (1) से, 2x – 1 = 3y या [latex]\frac{2 x-1}{3}[/latex] = y
या y = [latex]\frac{2 x-1}{3}[/latex]
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 15
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 15a
∵ दोनों रेखायें एक – दूसरे को बिन्दु ( – 1 – 1) पर काटती हैं।
अतः x = – 1 तथा y = – 1

UP Board Solutions

प्रश्न 13.
समीकरण 3x – y + 9 = 0 और 3x + y = 0 तथा 3x + 4y – 6 = 0 (UPBoardSolutions.com) का आलेख दर्शाइये तथा रेखाओं और x – अक्ष से निर्मित त्रिभुज के शीर्ष भी ज्ञात कीजिए।
हलः
समीकरण 3x – y + 9 = 0 ……….(1)
तथा 3x + y = 0 ……(2)
तथा 3x + 4y – 6 = 0 ……(3)
समी० (1) से, 3x + 9 = y
या y = 3x + 9
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 16
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 17
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 18

UP Board Solutions

प्रश्न 14.
निम्नलिखित रैखिक समीकरण युग्म (UPBoardSolutions.com) को प्रतिस्थापन विधि से हल करें-
(i) 7x – 15y = 2
x + 2y = 3 (NCERT)
(ii) 3x – y = 3
9x – 3y = 9 (NCERT)
(iii) s – t = 3
[latex]\frac{s}{3}+\frac{t}{2}[/latex] = 6 (NCERT)
(iv) [latex]\frac{\boldsymbol{x}}{\boldsymbol{a}}+\frac{\boldsymbol{y}}{\boldsymbol{b}}[/latex] = 2, a ≠ 0, b ≠ 0
ax – by = a2 – b2
हल:
(i) समीकरण 7x – 15y = 2 ……..(1)
तथा x + 2y = 3 …..(2)
समी० (2) से, x = 3 – 2y ……………(3)
समी० (3) से x का मान समी० (1) में प्रतिस्थापित करने पर,
7(3 – 2y) – 15y = 2
21 – 14y – 15y = 2
21 – 29y = 2
या – 29y = 2 – 21
या – 29y = – 19
या y = [latex]\frac{19}{29}[/latex]
y का मान समी० (3) में रखने पर,
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 19

UP Board Solutions
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 21
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 22
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 23

UP Board Solutions

प्रश्न 15.
निम्नलिखित रैखिक समीकरण निकाय (UPBoardSolutions.com) को विलोपन विधि से हल करें-
(i) x + y = 5
2x – 3y = 4 (NCERT)
(ii) 3x – 5y = 4
9x – 2y = 7 (NCERT)
(iii) [latex]\frac{x}{2}+\frac{2 y}{3}[/latex] = -1
x = [latex]\frac{y}{3}[/latex] = 3 (NCERT)
(iv) [latex]\frac{3 a}{x}-\frac{2 b}{y}[/latex] + 5 = 0
[latex]\frac{a}{x}+\frac{3 b}{y}[/latex] – 2 = 0, x ≠ 0, y ≠ 0
हलः
विलोपन विधि से-
(i) समीकरण x + y = 5 ….(1)
तथा 2x – 3y = 4 ……(2)
समी० (1) को 3 से गुणा करने पर,
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 24

(ii) समीकरण 3x – 5y = 4 …..(1)
तथा 9x – 2y = 7 ….(2)
समी० (1) को 3 से गुणा करने पर,
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 25
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 26

UP Board Solutions
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 27
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 28

UP Board Solutions

प्रश्न 16.
निम्नलिखित रैखिक समीकरणों (UPBoardSolutions.com) को ब्रज-गुणन विधि से हल करें –
(i) 8x + 5y = 9
3x + 2y = 4 (NCERT)
(ii) 2x + 3y – 7 = 0
6x + 5y – 11 = 0 (NCERT)
हलः
ब्रज – गुणन विधि से-
(i) समीकरण 8x + 5y = 9
या 8x + 5y – 9 = 0 …(1)
तथा 3x + 2y = 4
या 3x + 2y – 4 = 0 ………(2)

(ii) समीकरण (UPBoardSolutions.com) 2x + 3y – 7 = 0 …(1)
तथा 6x + 5y – 11 = 0 …(2)
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 30

UP Board Solutions

Ex 3.5 Pair of Linear Equation in Two Variables दीर्घ उत्तरीय प्रश्न (Long Answer Type Questions)

प्रश्न 17.
एक कक्षा के विद्यार्थियों को पंक्तियों में खड़ा होना है। यदि प्रत्येक पंक्ति में 4 विद्यार्थी अतिरिक्त हो तो पंक्तियों की संख्या 2 कम हो जाती है तथा यदि प्रत्येक पंक्ति में 4 विद्यार्थी कम हो तो 4 पंक्तियाँ और बनानी पड़ेंगी। कक्षा में विद्यार्थियों (UPBoardSolutions.com) की संख्या ज्ञात कीजिए।
हलः
माना प्रत्येक पंक्ति में विद्यार्थियों की संख्या = x
तथा पंक्तियों की संख्या = y
तब कक्षा में कुल विद्यार्थियों की संख्या = xy
प्रश्नानुसार, पहली शर्त,
प्रत्येक पंक्ति में विद्यार्थी = (x + 4)
तथा पंक्तियों की संख्या = (y – 2)
कुल विद्यार्थियों की संख्या = xy
(x + 4) × (y – 2) = xy
xy – 2x + 4y – 8 = xy
– 2x + 4y = xy – xy + 8
– 2x + 4y = 8 …(1)
तथा दूसरी शर्त,
प्रत्येक पंक्ति में विद्यार्थी = (x – 4)
पंक्तियों की संख्या = (y + 4)
कुल विद्यार्थियों की संख्या = xy
(x – 4)x (y + 4) = xy
xy + 4x – 4y – 16 = xy
4x – 4y = xy – xy + 16
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 31
x का मान समी० (1) में रखने पर,
– 2 × 12 + 4y = 8
या 4y = 8 + 24
4y = 32
या y = [latex]\frac{32}{4}[/latex] = 8
अतः कक्षा में कुल विद्यार्थियों की संख्या = xy = 12 × 8 = 96

प्रश्न 18.
2 वर्ष पहले, एक व्यक्ति की आयु अपने पुत्र की आयु से 5 (UPBoardSolutions.com) गुनी थी। दो वर्ष बाद, उसकी आयु उसके पुत्र की आयु के तीन गुने से 8 अधिक थी। पिता एवं पुत्र की वर्तमान आयु ज्ञात कीजिए।
हलः
माना पिता की वर्तमान आयु = x वर्ष तथा पुत्र की वर्तमान आयु = y वर्ष
प्रश्नानुसार,
पहली शर्त, (x – 2) = 5 × (y – 2)
x – 2 = 5y – 10
x – 5y = – 10 + 2 या x – 5y= – 8 ….(1)
तथा दूसरी शर्त, (x + 2) = 3x (y + 2) + 8
x + 2 = 3y + 6 + 8
या x – 3y = 14 – 2
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 32
y का मान समी० (1) में रखने पर,
x – 5 × 10 = – 8
x – 50 = – 8 या x = – 8 + 50
x = 42
अतः पिता की आयु = 42 वर्ष तथा पुत्र की आयु = 10 वर्ष

UP Board Solutions

प्रश्न 19.
एक भिन्न का अंश, उसके हर से एक कम है। यदि अंश व हर दोनों में 3 (UPBoardSolutions.com) जोड़ा जाये तो वह भिन्न मूल भिन्न से [latex]\frac{3}{28}[/latex] अधिक हो जाती है। भिन्न ज्ञात कीजिए।
हलः
भिन्न का हर = x तथा अंश = x – 1
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 33

प्रश्न 20.
एक रेलगाड़ी एक नियत चाल से 300 किमी० चलती है। यदि रेलगाड़ी की (UPBoardSolutions.com) चाल 5 किमी०/घण्टा बढ़ा दी जाये, तो यात्रा पूरी करने में दो घण्टे कम लगते हैं। रेलगाड़ी की मूल चाल ज्ञात कीजिए।
हलः
माना रेलगाड़ी की मूल चाल = x km/hr
तब, 300 किमी की दूरी तय करने में रेलगाड़ी को लगा समय = Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 34 घण्टे
यदि रेलगाड़ी की चाल 5 km/h बढ़ा दी जाये तो
अब, रेलगाड़ी की चाल = (x + 5) km/h
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 36
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 35

UP Board Solutions

प्रश्न 21.
m व n के वे मान ज्ञात कीजिए, जिनके लिए निम्न (UPBoardSolutions.com) समीकरण निकाय, अनंततः हल रखता है।
3x + 4y = 12;
(m + n)x + 2(m – n)y = 5m – 1
हलः
समीकरण 3x + 4y = 12 …(1)
तथा (m + n)x + 2(m – n)y = 5m – 1
∵ समीकरण निकाय के अनंततः हल है।
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 37
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 38

प्रश्न 22.
k के किस मान के लिए निम्न समीकरण निकाय अनंततः हल रखता है
2x – 3y = 7;
(k + 1)x + (1 – 2k)y = 5k – 4
हलः
समीकरण 2x – 3y – 7 = 0 ….(1)
तथा (k + 1)x + (1 – 2k)y = 5k – 4 …(2)
∵ समीकरण निकाय के अनंततः हल है।
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 39
अतः k = 5

UP Board Solutions

प्रश्न 23.
दो अंकों की एक संख्या के दोनों अंकों का गुणनफल 14 है। (UPBoardSolutions.com) यदि संख्या में 45 जोड़ा जाये तो अंकों के स्थान बदल जाते हैं। संख्या ज्ञात कीजिए।
हलः
माना, इहाई का अंक = x तथा इकाई का अंक = y है।
तब अभीष्ट संख्या = (10x + y)
प्रश्नानुसार, पहली शर्त xy = 14
या y = [latex]\frac{14}{x}[/latex] …(1)
तथा दूसरी शर्त, 10x + y + 45 = 10 y + x
10x + y – 10y – x = – 45
या 9x – 9y = – 45
9(x – y) = – 45
या x – y = [latex]-\frac{45}{9}[/latex]
या x – y = – 5 …(2)
समी० (1) से y का मान समी० (2) में रखने पर,
x – [latex]\frac{14}{x}[/latex] = -5
या [latex]\frac{x^{2}-14}{x}[/latex] = -5
x2 – 14 = – 5x
x2 + 5x – 14 = 0
या x2 + 7x – 2x – 14 = 0
x(x + 7) – 2(x + 7) = 0
(x + 7)(x – 2) – 0
x + 7 = 0 तथा x – 2 = 0
x = – 7 (अमान्य) x = 2
x का मान समी० (1) में रखने पर,
y = [latex]\frac{14}{2}[/latex] = 7
अतः अभीष्ट संख्या = 10x + y = 10 × 2 + 7 = 20 + 7 = 27

UP Board Solutions

प्रश्न 24.
उस चक्रीय चतुर्भुज ABCD के कोण ज्ञात कीजिए, जिसमें
∠A = (4x + 20)°, ∠B = (3x – 5)°, ∠C = (4y)° तथा ∠D = (7y + 5)°
हल:
चक्रीय चतुर्भुज ABCD में,
∠A = (4x + 20), ∠B = (3x – – 5)°
∠C = (4y)° तथा ∠D = (7y + 5)°
∵ चक्रीय चतुर्भुज के सम्मुख कोणों का योगफल = 180°
∴ ∠A + ∠C = 180°
4x + 20 + 4y = 180 या 4x + 4y = 180 – 20
4x + 4y = 160 या 4(x + y) = 160
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 40
y का मान समी० (1) में रखने पर,
x + 15 = 40 या
x = 40 – 15 = 25
अतः ∠A = (4x + 20) = 4 × 25 + 20 = 100 + 20 = 120°
∠B = (3x – 5)° = 3 × 25 – 5 = 75 – 5 = 70°
∠C = 4y = 4 × 15 = 60°
∠D = (7y + 5)° = 7 × 15 + 5 = 105 + 5 = 110°

UP Board Solutions

प्रश्न 25.
निम्न समीकरण निकाय को (UPBoardSolutions.com) हल कीजिए-
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 41
हलः
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 42
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 43
x का मान समी० (5) में रखने पर,
4 – y = 1
या 4 – 1 = y या y = 3
अतः x = 4 तथा y = 3

UP Board Solutions

प्रश्न 26.
k के किस मान के लिए निम्न समीकरण (UPBoardSolutions.com) निकाय का कोई हल नहीं है।
(3k + 1)x + 3y – 2 = 0;
(k2 + 1)x + (k – 2)y – 5 = 0
हलः
समीकरण निकाय
(3k + 1)x + 3y – 2 = 0 …(1)
(k2 + 1)x + (k – 2)y – 5 = 0 …(2)
∵ समीकरण निकाय का कोई हल नहीं है,
Balaji Class 10 Maths Solutions Chapter 3 Pair of Linear Equation in Two Variables Ex 3.5 44
(3k + 1) (k – 2) = 3 (k2 + 1)
3k2 – 6k + k – 2 = 3k2 + 3
3k2 – 5k, – 3k2 = 3 + 2
-5k = 5
-k = [latex]\frac{5}{5}[/latex] ⇒ -k = 1
अतः k = – 1

Balaji Publications Mathematics Class 10 Solutions