UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits (अर्द्धचालक इलेक्ट्रॉनिकी: पदार्थ, युक्तियाँ तथा सरल परिपथ) are part of UP Board Solutions for Class 12 Physics. Here we have given UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits (अर्द्धचालक इलेक्ट्रॉनिकी: पदार्थ, युक्तियाँ तथा सरल परिपथ).

Board UP Board
Textbook NCERT
Class Class 12
Subject Physics
Chapter Chapter 14
Chapter Name Semiconductor Electronics: Materials, Devices and Simple Circuits (अर्द्धचालक इलेक्ट्रॉनिकी: पदार्थ, युक्तियाँ तथा सरल परिपथ)
Number of Questions Solved 122
Category UP Board Solutions

UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits (अर्द्धचालक इलेक्ट्रॉनिकी: पदार्थ, युक्तियाँ तथा सरल परिपथ)

 अभ्यास के अन्तर्गत दिए गए प्रश्नोत्तर

प्रश्न 1:
किसी प्रकार के सिलिकॉन में निम्नलिखित में से कौन-सा प्रकथन सत्य है?
(a) इलेक्ट्रॉन बहुसंख्यक वाहक हैं और त्रिसंयोजी परमाणु अपमिश्रक हैं।
(b) इलेक्ट्रॉन अल्पसंख्यक वाहक हैं और पंचसंयोजी परमाणु अपमिश्रक हैं।
(c) होल (विवर) अल्पसंख्यक वाहक हैं और पंचसंयोजी परमाणु अपमिश्रक हैं।
(d) होल (विवर) बहुसंख्यक वाहक हैं और त्रिसंयोजी परमाणु अपमिश्रक हैं।
उत्तर:
(c) प्रकथन सत्य है।

UP Board Solutions

प्रश्न 2:
प्रश्न 1 में दिए गए कथनों में से कौन-सी p-प्रकार के अर्द्धचालकों के लिए सत्य है?
उत्तर:
(d) प्रकथन सत्य है।

प्रश्न 3:
कार्बन, सिलिकॉन और जर्मोनियम, प्रत्येक में चार संयोजक इलेक्ट्रॉन हैं। इनकी विशेषता ऊर्जा बैड अन्तराल द्वारा पृथक्कृत संयोजकता और चालन बैंड द्वारा दी गई हैं, जो क्रमशः
(Eg)c, (Eg)s; तथां (Eg) Ge के बराबर हैं। निम्नलिखित में से कौन-सा प्रकथन सत्य है?
(a) (Eg)si <(Eg) Ge <(Eg)c
(b) (Eg)c <(Eg) Ge > (Eg)st
(c) (Eg)c > (Eg)s >(Eg) Ge
(d) (Eg)c = (Eg)si = (Eg)Ge
उत्तर:
चालन बैंड तथा संयोजकता बैंड के बीच ऊर्जा अन्तराल कार्बन के लिए सबसे अधिक, सिलिकॉन के लिए उससे कम तथा जर्मेनियम के लिए सबसे कम होता है; अतः (c) प्रकथन सत्य है।

प्रश्न 4:
बिना बायस p-n सन्धि में, होल क्षेत्र में n-क्षेत्र की ओर विसरित होते हैं, क्योंकि
(a) n-क्षेत्र में मुक्त इलेक्ट्रॉन उन्हें आकर्षित करते हैं।
(b) ये विभवान्तर के कारण सन्धि के पार गति करते हैं।
(c) p-क्षेत्र में होल-सान्द्रता, n-क्षेत्र में उनकी सान्द्रता से अधिक है।
(d) उपरोक्त सभी।
उत्तर:
(c) प्रकथन सत्य है।

प्रश्न 5:
जब p- n सन्धि पर अग्रदिशिक बायस अनुप्रयुक्त किया जाता है, तब यह
(a) विभव रोधक बढ़ाता है।
(b) बहुसंख्यक वाहक धारा को शून्य कर देता है।
(c) विभव रोधक को कम कर देता है।
(d) उपरोक्त में से कोई नहीं।
उत्तर:
(c) प्रकथन सत्य है।

प्रश्न 6. ट्रांजिस्टर की क्रिया हेतु निम्नलिखित में से कौन-से कथन सही हैं
(a) आधार, उत्सर्जक और संग्राहक क्षेत्रों की आमाप और अपमिश्रण सान्द्रता समान होनी  चाहिए।
(b) आधार क्षेत्र बहुत बारीक और कम अपमिश्रित होना चाहिए।
(c) उत्सर्जक सन्धि अग्रदिशिक बायस है और संग्राहक सन्धि पश्चदिशिक बायस है।
(d) उत्सर्जक सन्धि संग्राहक सन्धि दोनों ही अग्रदिशिक बायस हैं।
उत्तर:
(b) तथा (c) प्रकथन सत्य हैं।

UP Board Solutions

प्रश्न 7:
किसी ट्रांजिस्टर प्रवर्धक के लिए वोल्टता लब्धि
(a) सभी आवृत्तियों के लिए समान रहती है।
(b) उच्च और निम्न आवृत्तियों पर उच्च होती है तथा मध्य आवृत्ति परिसर में अचर रहती है।
(e) उच्च और निम्न आवृत्तियों पर कम होती है और मध्य आवृत्तियों पर अचर रहती है।
(d) उपरोक्त में से कोई नहीं।
उत्तर:
(c) प्रकथन सत्य है।

प्रश्न 8:
अर्द्ध-तरंगी दिष्टकरण में, यदि निवेश आवृत्ति 50Hz है तो निर्गम आवृत्ति क्या है? समान निवेश आवृत्ति हेतु पूर्ण तरंग दिष्टकारी की निर्गम आवृत्ति क्या है? उत्तर:
अर्द्ध-तरंग दिष्टकारी के लिए निर्गम आवृत्ति 50Hz ही रहेगी परन्तु पूर्ण-तरंग दिष्टकारी के लिए निर्गम आवृत्ति दोगुनी अर्थात् 100 Hz होगी।

प्रश्न 9:
उभयनिष्ठ उत्सर्जक (CE-ट्रांजिस्टर) प्रवर्धक हेतु, 2Ω के संग्राहक प्रतिरोध के सिरों पर ध्वनि वोल्टता 2V है। मान लीजिए कि ट्रांजिस्टर का धारा प्रवर्धन गुणक 100 है। यदि आधार प्रतिरोध 1kΩ है तो निवेश संकेत (signal) वोल्टता और आधार धारा परिकलित कीजिए।
हल:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 10:
एक के पश्चात् एक श्रेणीक्रम सोपानित में दो प्रवर्धक संयोजित किए गए हैं। प्रथम प्रवर्धक की वोल्टता लब्धि 10 और द्वितीय की वोल्टता लब्धि 20 है। यदि निवेश संकेत 0.01 वोल्ट | है तो निर्गम प्रत्यावर्ती संकेत का परिकलन कीजिए।
हल:
यहाँ A1 = 10 तथा A2 = 20 Vi = 0.01 वोल्ट
अतः कुल वोल्टता लाभ A = A1 x A2 = 10 x 20 = 200
परन्तु A =  [latex]\frac { { V }_{ 0 } }{ { V }_{ i } }[/latex] ⇒  निर्गत वोल्टता V0 = A x Vi
V= (200 x 0.01) वोल्टे = 2 वोल्ट

प्रश्न 11:
कोई p-n फोटोडायोड 2.8eV बैंड अन्तराल वाले अर्द्धचालक से संविरचित है। क्या यह 6000 nm की तरंगदैर्ध्य का संसूचन कर सकता है?
हल:
λ = 6000 nm = 6000 x 10-9 मी तरंगदैर्घ्य के संगत फोटॉन की ऊर्जा
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 1
= 3.3 x 10-20 जूल
= (3.3 x 10-20 1.6 x 10-19) eV
≈ 0.2 eV
यह फोटॉन ऊर्जा (0.2 eV) बैण्ड रिक्ति (28eV) से काफी कम है। अतः फोटो डायोड दी गयी तरंगदैर्घ्य का संसूचन नहीं कैर सकता है।

अतिरिक्त अभ्यास

प्रश्न 12:
सिलिकॉन परमाणुओं की संख्या 5 x 1028 प्रति m3 है। यह साथ ही साथ आर्सेनिक के 5 x 1022 परमाणु प्रति m3 और इंडियम के 5 x 1020 परमाणु प्रति m3 से अपमिश्रित किया गया है। इलेक्ट्रॉन और होल की संख्या का परिकलन कीजिए। दिया है क ni = 1.5 x 1016 m-3 दिया गया पदार्थ n-प्रकार का है या p-प्रकार का?
हल:
यहाँ दाता परमाणुओं की सान्द्रता ND = 5 x 1022 m-3
ग्राही परमाणुओं की सान्द्रत NA = 5 x 1020 m-3
= 0.05 x 1022 m-3
नैज वाहक सान्द्रता ni = 1.5 x 1016 m-3
नैज परमाणु सान्द्रता N = 5 x 1028 m-3
माना अर्द्धचालक में होलों तथा मुक्त इलेक्ट्रॉनों की सान्द्रता क्रमशः nh तथा ne है।
अब ND – NA = (5 – 0.05) x 1022 = 4.95 x 1042 m-3
अर्द्धचालक की विद्युत उदासीनता के लिए
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 2
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
स्पष्ट है कि ne >> nh अतः इस अर्द्धचालक में इलेक्ट्रॉन बहुसंख्यक आवेश वाहक हैं तथा होल अल्पसंख्यक आवेश वाहक हैं।
इससे ज्ञात होता है कि यह n-प्रकार का अर्द्धचालक है।

UP Board Solutions

प्रश्न 13:
किसी नैज अर्द्धचालक में ऊर्जा अन्तराल Eg का मान 1.2 eV है। इसकी होल गतिशीलता इलेक्ट्रॉन गतिशीलता की तुलना में काफी कम है तथा ताप पर निर्भर नहीं है। इसकी 600 K तथा 300 K पर चालकताओं का क्या अनुपात है? यह मानिए की नैज वाहक सान्द्रता n की ताप निर्भरता इस प्रकार व्यक्त होती है
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 3
जहाँ n0 एक स्थिरांक है।
हल:
नैज अर्द्धचालक को ऊर्जा अन्तराल E = 1.2 eV
तथा परमताप T1 = 600K व T2 = 300K
माना उक्त तापों पर (UPBoardSolutions.com) अर्द्धचालक की चालकताएँ क्रमशः σ1 वे σ2
अर्द्धचालक की चालकता निम्नलिखित सूत्र द्वारा प्राप्त होती है
σ = [neμe + nhμh}]
जहाँ μe तथा  μh क्रमशः इलेक्ट्रॉनों तथा होलों की गतिशीलताएँ हैं।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 4
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 5

UP Board Solutions

प्रश्न 14:
किसी p-n सन्धि डायोड में धारी I को इस प्रकार व्यक्त किया जा सकता है
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 6
जहाँ I0 को उत्क्रमित संतृप्त धारा कहते हैं, V डायोड के सिरों पर वोल्टता है तथा यह अग्रदिशिक बायस के लिए धनात्मक तथा पश्चदिशिक बायस के लिए ऋणात्मक है। V डायोड से प्रवाहित धारा है, KB बोल्ट्जमान नियतांक (8.6 x 10-5 eV/K) है तथा T परम ताप है। यदि किसी दिए गए डायोड के लिए I0 = 5 x 10-12 A तथा T= 300K है, तब
(a) 0.6 अग्रदिशिक वोल्टता के लिए अग्रदिशिक धारा क्या होगी?
(b) यदि डायोड के सिरों पर वोल्टता को बढ़ाकर 0.7V कर दें तो धारा में कितनी वृ जाएगी?
(c) गतिक प्रतिरोध कितना है?
(d) यदि पश्चदिशिक वोल्टता को 1 से 2V कर दें तो धारा का मान क्या होगा?
हल:
दिया है, KB = 8.6 x 10-5 eCK-1 = 1.6 x 10-19 x 86 x 10-5 JK-1
I0 = 5 x 10-12A, T = 300K
(a) V= + 0.6V के लिए अग्र धारा I = ?
अभीष्ट धारा
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 7
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
अतः उत्क्रम वोल्टता के लिए धारा उत्क्रमित संतृप्त धारा के बराबर बनी रहती है।
इससे ज्ञात होता है कि पश्चदिशिक बायस के लिए डायोड का गतिक प्रतिरोध अनन्त होता है।

प्रश्न 15:
आपको चित्र 14.1 में दो परिपथ दिए गए हैं। यह दर्शाइए कि परिपथ (a) OR गेट की भाँति व्यवहार करता है जबकि परिपथ (b) AND गेट की भाँति कार्य करता है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
हल:
चित्र 14.1(a) में पहला गेट NOR गेट है तथा इसके निर्गम ४’ को दूसरे गेट (NOT गेट) का निवेश बनाया गया है जिसका निर्गम Y है। अतः इसकी सत्यता सारणी निम्न प्रकार लिखी जा सकती है
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 8
यहाँ से स्पष्ट है Y = A + B
अतः दिया गया परिपथ (a) OR गेट की भाँति कार्य करेगा।
चित्र 14.1 (b) में दो NOT गेटों के निर्गमों को NOR गेट के निवेश बनाये गये हैं जिसका निर्गम Y है। अतः इसकी सत्यता सारणी निम्न प्रकार लिखी जा सकती है
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
यहाँ से स्पष्ट है कि Y = A : B, अत: दिया गया परिपथ (b) AND गेट की भाँति कार्य करेगा।

प्रश्न 16:
नीचे दिए गए चित्र 14.2 में संयोजित NAND गेट संयोजित परिपथ की सत्यमान सारणी बनाइए।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 9
अतः इस परिपथ द्वारा की जाने वाली यथार्थ तर्क संक्रिया का अभिनिर्धारण कीजिए।
हल:
यहाँ NAND गेट के दोनों निवेशी टर्मिनल एक साथ जोड़ दिये गये हैं। इस प्रकार एक निवेश के लिए एक ही निर्गम Y है। अतः दिए गये परिपथ की सत्यता सारणी निम्न प्रकार लिखी जा सकती है
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 10
अत: Y = Ā इसलिए दिया गया परिपथ NOT तर्क संक्रिया पर कार्य करेगा।

प्रश्न 17:
आपको निम्न चित्र 14.3 में दर्शाए अनुसार परिपथ दिए गए हैं जिनमें NAND गेट जुड़े हैं। इन दोनों परिपथों द्वारा की जाने वाली तर्क संक्रियाओं का अभिनिर्धारण कीजिए।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
हल:
चित्र 14.3 (a) में पहला गेट NAND गेट है जिसके निर्गम को NAND गेट से बनाये गये NOT गेट का निर्वेशं बनाया गया है। अतः सत्यता सारणी निम्नवत् होगी
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 11
स्पष्ट है कि निर्गम Y = A : B, अतः दिये गये परिपथ में AND संक्रिया अनुपालित है।
दिये गये चित्र 14.3 (b) में NAND गेटों से बने दो NOT गेटों के निर्गमों को तीसरे NAND गेट का निवेश बनाया गया है। जिसका निर्गम Y है। अतः सत्यता सारणी निम्नवत् होगी
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
अतः स्पष्ट है कि यहाँ निर्गम Y = A+ B, अत: दिये गये परिपथ में OR संक्रिया अनुपालित है।

प्रश्न 18:
चित्र 14.4 में दिए गए NOR गेट युक्त परिपथ की सत्यमान सारणी लिखिए और इस परिपथ द्वारा अनुपालित तर्क संक्रियाओं (OR, AND, NOT) को अभिनिर्धारित कीजिए। (संकेत : A = 0, B=1 तब दूसरे NOR गेट के निवेश A और B, 0 होंगे और इस प्रकार Y = 1 होगा। इसी प्रकार A और B के दूसरे संयोजनों के लिएY के मान प्राप्त कीजिए। OR, AND, NOT द्वारों की सत्यमान सारणी से तुलना कीजिए और सही विकल्प प्राप्त कीजिए।)
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 12
हल:
पहला गेट NOR गेट है तथा दूसरा गेट भी NOR गेट है जिसके दोनों निवेशी सिगनलों को एक साथा जोड़ा गया है। पहले गेट का निर्गम दूसरे गेट का निवेश बनाया गया है। अत: सत्यता सारणी निम्नवत् होगी
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
यहाँ से स्पष्ट है कि Y =[latex]\overline { A\quad +\quad B }[/latex] = A+B, अतः दिया गया परिपथ OR संक्रिया अनुपालित करेगा।

प्रश्न 19:
चित्र 14.5 में दर्शाएंगैकवल NOR गेटों से बने परिपथ की सत्यमान सारणी बनाइए। दोनों परिपथों द्वारा अनुपालित तर्क संक्रियाओं (OR, AND, NOT) को अभिनिर्धारित कीजिए।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
हल:
चित्र 14.5 (a) में दिया गया परिपथ NOR गेट है जिसके दोनों निवेशी टर्मिनले एक साथ जोड़ दिये गए हैं।
अत: इसकी सत्यता सारणी निम्नवत् होगी
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 13
स्पष्ट है कि Y = [latex]\overline { A\quad +\quad B }[/latex] = Ā, अत: दिया गया परिपथ NOT संक्रिया को निरूपित करता है। चित्र 14.5 (b) में NOR गेट से बने दो NOT गेटों द्वारा दोनों निवेशी A व B को उत्क्रम करके उनको तीसरे NOR गेट के निवेश बनाया गया है जिसका निर्गम Y है। अतः सत्यता सारणी निम्नवत् होगी
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
यहाँ से स्पष्ट है कि Y = [latex]\overline { \begin{matrix} \bar { A } + & \bar { B }  \end{matrix} }[/latex] = A .B, अतः चित्र 14.5 (b) में प्रदर्शित परिपथ AND संक्रिया का अनुपालन करेगा।

परीक्षोपयोगी प्रश्नोत्तर

बहुविकल्पीय प्रश्न

प्रश्न 1:
तीन पदार्थों के ऊर्जा बैण्ड चित्रों में दिए गए हैं, जहाँ V संयोजी बैण्ड तथा C चालन बैण्ड हैं। ये पदार्थ क्रमशः हैं (2014)
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
(i) चालक, अर्द्धचालक, कुचालक
(ii) अर्द्धचालक, कुचालक, चालक
(iii) कुचालक, चालक, अर्द्धचालक
(iv) अर्द्धचालक, चालक, कुचालक
उत्तर:
(iv) अर्द्धचालक, चालक, कुचालक

प्रश्न 2:
अर्द्धचालक में वैद्युत चालन होता है (2010, 17)
(i) कोटरों से
(ii) इलेक्ट्रॉनों से
(iii) कोटरों तथा इलेक्ट्रॉनों से
(iv) न कोटरों से, न इलेक्ट्रॉनों से
उत्तर:
(iii) कोटरों तथा इलेक्ट्रॉनों से

UP Board Solutions

प्रश्न 3:
अर्द्धचालकों की चालकता
(i) ताप पर निर्भर नहीं करती
(ii) ताप बढ़ने पर घटती है
(iii) ताप बढ़ने पर बढ़ती है
(iv) ताप घटने पर घटती है
उत्तर:
(iii) ताप बढ़ने पर बढ़ती है।

प्रश्न 4:
परम शून्य ताप पर शुद्ध जर्मेनियम का क्रिस्टल व्यवहार करता है  (2010, 12)
(i) पूर्ण चालक की भाँति
(ii) पूर्ण अचालक की भाँति
(iii) अर्द्धचालक की तरह
(iv) इनमें से किसी भी तरह का नहीं
उत्तर:
(ii) पूर्ण अचालक की भाँति

प्रश्न 5:
किसी n-प्रकार के अर्द्धचालक में आवेश वाहक होते हैं (2011)
(i) केवल इलेक्ट्रॉन
(ii) केवल कोटर (होल)
(iii) दोनों, अल्प संख्या में इलेक्ट्रॉन तथा अधिक संख्या में कोटर (होल)
(iv) दोनों, अधिक संख्या में इलेक्ट्रॉन तथा अल्प संख्या में कोटर (होल)
उत्तर:
(iv) दोनों, अधिक संख्या में इलेक्ट्रॉन तथा अल्प संख्या में कोटर (होल)

प्रश्न 6:
n-प्रकार के अर्द्धचालक में अल्पसंख्यक आवेश वाहक होते हैं (2010)
(i) इलेक्ट्रॉन
(ii) होल
(iii) इलेक्ट्रॉन तथा होल
(iv) इनमें से कोई नहीं
उत्तर:
(ii) होल

UP Board Solutions

प्रश्न 7:
शुद्ध सिलिकॉन के n-टाइप अर्द्धचालक बनाने के लिए इसमें अपद्रव्य पदार्थ मिलाते हैं (2014)
(i) ऐलुमिनियम
(ii) लोहा
(iii) बोरॉन
(iv) ऐण्टीमनी
उत्तर:
(iv) ऐण्टीमनी

प्रश्न 8:
n-टाइप अर्द्धचालक में वैद्युत चालन का कारण है (2016)
(i) इलेक्ट्रॉन
(ii) कोटर
(iii) प्रोटॉन
(iv) पॉजिट्रॉन
उत्तर:
(i) इलेक्ट्रॉन

प्रश्न 9:
कोटर (छिद्र) अधिसंख्य आवेश वाहक होते हैं (2017)
(i) नैज अर्द्धचालकों में
(ii) n-प्रकार के अर्द्धचालकों में
(iii) p-प्रकार के अर्द्धचालकों में
(iv) धातुओं में
उत्तर:
(iii) p-प्रकार के अर्द्धचालकों में

UP Board Solutions

प्रश्न 10:
p-प्रकार का अर्द्धचालक बनाने के लिए शुद्ध जर्मेनियम में मिलाया जाने वाला अपद्रव्य होता है (2011, 15, 17)
(i) फॉस्फोरस
(ii) ऐण्टीमनी
(iii) ऐलुमिनियम
(iv) आर्सेनिक
उत्तर:
(iii) ऐलुमिनियम

प्रश्न 11:
p-n सन्धि डायोड में उत्क्रम संतृप्ति धारा का कारण है केवल (2009)
(i) अल्पसंख्यक वाहक
(ii) बहुसंख्यक वाहक
(iii) ग्राही आयन
(iv) दाता आयन
उत्तर:
(i) अल्पसंख्यक वाहक

प्रश्न 12:
p-n सन्धि डायोड के अवक्षय परत में होते हैं (2012, 17)
(i) केवल कोटर
(ii) केवल इलेक्ट्रॉन
(iii) इलेक्ट्रॉन तथा कोटर दोनों
(iv) न इलेक्ट्रॉन तथा न कोटर
उत्तर:
(iv) न इलेक्ट्रॉन तथा न कोटर

प्रश्न 13:
जर्मेनियम डायोड की प्राचीर विभव लगभग है (2009)
(i) 0.1 वोल्ट
(ii) 0.3 वोल्ट
(iii) 0.5 वोल्ट
(iv) 0.7 वोल्ट
उत्तर:
(ii) 0.3 वोल्ट

प्रश्न 14:
एक n-p-n ट्रांजिस्टर में संग्राहक धारा 24 mA है। यदि संग्राहक की ओर 80% इलेक्ट्रॉन पहुँचते हों तो आधार धारा है (2014)
(i) 3 mA
(ii) 16 mA
(iii) 6 mA
(iv) 36 mA
उत्तर:
(iii) Ic = 24 mA, α = 80% = 0.8, IB = ?
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 15:
एक ट्रांजिस्टर की आधार धारा 100 μA और संग्राहक धारा 2.15 mA है। β का मान होगा (2009)
(i) 21.5
(ii) 0.0465
(iii) 2.15 x 105
(iv) 10
उत्तर:
(i) 21.5

UP Board Solutions

प्रश्न 16:
दो निवेशी टर्मिनलों वाले OR गेट का निर्गत केवल तब 0 होता है जब (2013,15)
(i) कोई एक निवेशी 1 हो
(ii) दोनों निवेशी 1 हों
(ii) कोई एक निवेशी 0 हो
(iv) इसके दोनों निवेशी 0 हों
उत्तर:
(iv) इसके दोनों निवेशी 0 हों।

प्रश्न 17:
दो निवेश A तथा B वाले ORगेट का निर्गत शून्य होने के लिए यह आवश्यक है कि  (2011)
(i) A = 0, B = 0
(ii) A = 1, B = 0
(iii) A = 0, B = 1
(iv) A = 1, B = 1
उत्तर:
(i) A = 0, B = 0

प्रश्न 18:
OR गेट में एक निवेश 0 एवं दूसरा 1 है, निर्गत होगा (2017)
(i) 0
(ii) 1
(iii) 0 या 1
(iv) इनमें से कोई नहीं
उत्तर:
(ii) 1

प्रश्न 19:
निम्नांकित लॉजिक निकाय निरूपित करता है (2016)
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
(i) NAND गेट
(ii) OR. गेट
(iii) AND गेट
(iv) NOT गेट
उत्तर:
(ii) OR गेट

UP Board Solutions

प्रश्न 20:
AND गेट में उच्च निर्गत प्राप्त करने के लिए निवेशी A व B होने चाहिए (2011)
(i) A = 0, B = 0
(ii) A = 1, B = 0
(iii) A = 0, B = 1
(iv) A = 1, B = 1
उत्तर:
(iv) A = 1, B = 1

प्रश्न 21:
AND गेट में एक निवेशी 0 तथा दूसरा 1 है। निर्गत होगा (2015)
(i) 0
(ii) 1
(iii) अनन्त
(iv) इनमें से कोई न
उतर:
(i) 0

UP Board Solutions

प्रश्न 22:
बूलियन व्यंजक Y = A[latex]\overline { B }[/latex] + B[latex]\overline { A }[/latex] दिया गया है। यदि A= 1 तथा B= 1 हो, तो Y का मान होगा (2012)
(i) 0
(ii) 1
(iii) 11
(iv) 10
उत्तर:
(i) 0
[ सिंकेत A = 1 ⇒ Ā = 0 तथा B = 1 ⇒ [latex]\overline { B }[/latex] = 0
A. [latex]\overline { B }[/latex]= 1.0= 0. तथा B. [latex]\overline { A }[/latex] = 1.0 = 0
∴ A. [latex]\overline { B }[/latex] + B. [latex]\overline { A }[/latex] = 0 +0= 0]

प्रश्न 23:
चिंध्र 14.8 में प्रदर्शित गेटों के संयोजन से निर्गतY = 1 प्राप्त करने के लिए    [2015, 16]
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
(i) A = 1, B = 0, C = 1
(ii) A = 1, B = 1 C = 0
(iii) A = 0, B = 1, C =0
(iv) A = 1 B = 0, C = 0
उत्तर:
(i) A = 1, B = 0, C = 1

प्रश्न 24:
बाइनरी संख्याओं 1011 व 110 का योग है  (2012, 13)
(i) 10001
(ii) 10011
(iii) 11011
(iv) 11101
उत्तर:
(i) 10001

प्रश्न 25:
निम्नलिखित में से कौन-सा बाइनरी योग नियमानुसार नहीं है? (2013) 
(i) 0 + 0= 0
(ii) 0 + 1 = 1
(iii) 1 +0 = 1
(iv) 1 + 1 = 1
उत्तर:
(iv) 1 + 1 = 1

अतिलघु उत्तरीय प्रश्न

प्रश्न 1:
ऊर्जा बैण्ड किसे कहते हैं?
उत्तर:
किसी निश्चित लघु ऊर्जा परिसर में अत्यन्त निकट रूप से स्थित ऊर्जा स्तरों की एक बड़ी संख्या का समूह ऊर्जा बैण्ड कहलाता है।

UP Board Solutions

प्रश्न 2:
ठोसों में उपस्थित ऊर्जा बैण्डों के नाम लिखिए। (2014, 15, 17)
उत्तर:
चालन बैण्ड तथा संयोजी बैण्ड।

प्रश्न 3:
सिलिकॉन में वर्जित बैण्ड की ऊर्जा कितनी होती है?
उत्तर:
1.1 eV लगभग।

प्रश्न 4:
अर्द्धचालक क्या होता है? किसी एक अर्द्धचालक का नाम लिखिए। (2009)
उत्तर:
वे ठोस पदार्थ जिनकी वैद्युत चालकता, चालकों से कम; परन्तु अचालकों से अधिक होती है, अर्द्धचालक कहलाते हैं। उदाहरण–जर्मेनियम।।

प्रश्न 5:
ताप बढ़ाने पर अर्द्धचालक के प्रतिरोध में क्या परिवर्तन होता है? (2011)
या
किसी अर्द्धचालक का ताप बढाने से उसकी वैद्युत चालकता क्यों बढ़ जाती है?
उत्तर:
ताप बढ़ाने पर सहसंयोजक बन्ध टूट जाने के कारण अर्द्धचालक के मुक्त इलेक्ट्रॉनों की संख्या बढ़ जाती है जिससे अर्द्धचालक की चालकता बढ़ जाती है, अर्थात् उसका प्रतिरोध कम हो जाता है।

UP Board Solutions

प्रश्न 6:
जर्मेनियम को किस प्रकार से p-टाइप का अर्द्धचालक बनाया जाता है?
उत्तर:
इसमें त्रिसंयोजी अपद्रव्य (ऐलुमिनियम) मिलाकर।

प्रश्न 7:
p-क्रिस्टल तथा n- क्रिस्टल में बहुसंख्यक आवेश वाहकों के नाम बताइए। (2013)
उत्तर:
p-क्रिस्टल में बहुसंख्यक आवेश वाहक कोटर तथा n-क्रिस्टल में बहुसंख्यक आवेश वाहक इलेक्ट्रॉन होते हैं।

प्रश्न 8:
शुद्ध अर्द्धचालक में जब कोई अपद्रव्य मिलाया जाता है, तो क्या होता है? (2009)
उत्तर:
चालकता बढ़ जाती है।

प्रश्न 9:
n-टाइप सिलिकॉन अर्द्धचालक बनाने के लिए शुद्ध सिलिकॉन में कौन-सा अपद्रव्य मिलाना चाहिए? इस अपद्रव्य तत्व की संयोजकता क्या होगी? (2017) उत्तर:
आर्सेनिक (अथवा ऐन्टिमनी), संयोजकता-5

प्रश्न 10:
p-प्रकार का अर्द्धचालक क्या है? (2012)
उत्तर:
शुद्ध जर्मेनियम अर्द्धचालक क्रिस्टल में त्रिसंयोजी अपद्रव्य मिलाने से बना वह बाह्य अर्द्धचालक जिसमें आवेश वाहक धनावेशित कोटर होते हैं, p-प्रकार का अर्द्धचालक कहलाता है।

UP Board Solutions

प्रश्न 11:
सन्धि डायोड में अवक्षय परत से आप क्या समझते हैं? (2010)
या
p – n डायोड में अवक्षय परत से आप क्या समझते हैं? (2011)
या
p – n संधि डायोड में अवक्षय परत का अर्थ समझाइए। (2017)
उत्तर:
अक्षय परत-सन्धि डायोड में p – n सन्धि के निकट दोनों ओर वह क्षेत्र जिसमें कोई स्वतन्त्र आवेश वाहक उपलब्ध नहीं होते हैं, अवेक्षय परत कहलाती है।

प्रश्न 12:
अवक्षय परत की चौड़ाई पर क्या प्रभाव पड़ेगा यदि अग्र-अभिनत विभव बढ़ा दिया जाए? (2013)
उत्तर:
कम हो जाएगी।

UP Board Solutions

प्रश्न 13:
उत्क्रम अभिनत p – n सन्धि डायोड में ऐवेलांश भंजन का क्या अर्थ है? (2012)
उत्तर:
ट्रैवेलांश भंजन:
उत्क्रम अभिनति वोल्टेज के बहुत अधिक हो जाने पर, अल्पसंख्यक वाहक काफी अधिक गतिज ऊर्जा अर्जित कर लेते हैं जिससे कि सन्धि के समीप सह-संयोजक बन्ध टूट जाते हैं। तथा इलेक्ट्रॉन- कोटर युग्म मुक्त हो जाते हैं। ये आवेश वाहक भी त्वरित होकर उसी प्रकार से अन्य इलेक्ट्रॉन-कोटर युग्मों को मुक्त करते हैं। यह प्रक्रिया संचयी होती है तथा इलेक्ट्रॉन-कोटर युग्म बहुत बड़ी संख्या में मुक्त हो जाते हैं। तब उत्क्रम (UPBoardSolutions.com) धारा का मान एकाएक बहुत बढ़ जाता है। इस स्थिति को ‘ऐवेलांश भंजन’ कहते हैं तथा इसमें धारा के कारण उत्पन्न ऊष्मा से सन्धि के क्षतिग्रस्त होने की आशंका रहती है। वह उत्क्रम वोल्टेज जिस पर उत्क्रम धारा एकाएक बढ़ जाती है, ‘भंजक वोल्टता’ कहलाता है।

प्रश्न 14:
दिए गये चित्र 14.9 में संन्थि डायोड D अग्र अभिनत है अथवा उत्क्रम-अभिनत है?  (2014)
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
उतर:
दिय गये चित्र में सन्धि डायोड D उत्क्रम अभिनत है।

प्रश्न 15:
एक p-n सन्धि डायोड का अग्र अभिनति में प्रतिरोध 20 ओम है। यदि अग्र वोल्टेज में 0.025 वोल्ट का परिवर्तन करें, तो डायोड धारा में कितना परिवर्तन होगा ?
हल:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 16:
जेनर डायोड का प्रतीक चिन्ह बनाइए। (2017)
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 17:
फोटो-डायोड में pen सन्धि डायोड किस प्रकार से संयोजित किया जाता है। इसका क्या उपयोग है?  (2016)
उत्तर:
फोटो डायोड प्रकाश संवेदनशील अर्द्धचालक से बना p – n सन्धि डायोड है, जो उत्क्रम अभिनति में कार्य करता है।
फोटो डायोड का उपयोग प्रकाश संसूचक के रूप में प्रकाश संचालित कुंजियों तथा कम्प्यूटर पंच का आदि के पढ़ने में किया जाता है।

प्रश्न 18:
LED का पूरा नाम लिखिए। (2015)
उत्तर:
Light Emitting Diode (प्रकाश उत्सर्जक डायोड)

प्रश्न 19:
p-n-p तथा n-p-n ट्रांजिस्टरों के नामांकित प्रतीक चिह्न (परिपथ प्रतीक) बनाइए। (2010, 12, 16, 17)
हल:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 20:
n-p-n ट्रांजिस्टर से आप्त क्या समझते हैं? (2012)
उत्तर:
वह ट्रांजिस्टर जिसमें 2-टाइप अर्द्धचालक की एक बहुत महीन तराश (slice) को n-टाइप अर्द्धचालकों के दो छोटे-छोटे गुटकों के बीच दबाकर बनाया जाता है,n-p-n ट्रांजिस्टर कहलाता है।

प्रश्न 21:
समझाइए कि ट्रांजिस्टर एक धारा संचालित युक्ति है, जबकि ट्रायोड वाल्व वोल्टता संचालित युक्ति है।
या
ट्रायोड वाल्व तथा ट्रांजिस्टर में अन्तर बताइए। (2010)
उत्तर:
ट्रायोड में कैथोड से उत्सर्जित इलेक्ट्रॉन, ग्रिड में से होकर संग्राहक प्लेट (ऐनोड) पर पहुँचते हैं। ट्रांजिस्टर में उत्सर्जक से प्राप्त इलेक्ट्रॉन (अथवा कोटर) आधार में से होकर संग्राहक पर पहुँचते हैं। परन्तु इन दोनों युक्तियों में प्रयुक्त भौतिक प्रक्रियाएँ भिन्न-भिन्न हैं। ट्रायोड में धारा का नियन्त्रण ग्रिड तथा कैथोड के बीच के वैद्युत-क्षेत्र से होता है। अत: धारा ग्रिड-वोल्टता (कैथोड के सापेक्ष) पर निर्भर करती है तथा (UPBoardSolutions.com) काफी बड़े परिसर में धारा में परिवर्तन ग्रिड-वोल्टता में परिवर्तन के लगभग अनुक्रमानुपाती होता है। अतः ट्रायोड वोल्टता-संचालित युक्ति है।
इसके विपरीत, ट्रांजिस्टर में संग्राहक-धारा आधार-धारा से नियन्त्रित होती है जो उत्सर्जक-धारा से प्राप्त की जाती है। संग्राहक-धारा में परिवर्तन आधार-धारा में परिवर्तन के अनुक्रमानुपाती होता है (न कि आधार-विभव में परिवर्तन के)। अतः ट्रांजिस्टर ‘धारा-संचालित युक्ति है।

UP Board Solutions

प्रश्न 22:
ट्रांजिस्टर की संग्राहक धारा, आधार धारा तथा उत्सर्जक धारा में क्या सम्बन्ध होता है? (2013, 16)
उत्तर:
उत्सर्जक धारा = आधार धारा + संग्राहक धारा
अर्थात् iE = iB + iC

प्रश्न 23:
n-p-n तथाp-n-p ट्रांजिस्टरों में कौन-सा ट्रांजिस्टर अधिक श्रेष्ठ है और क्यों ? (2010, 17)
उत्तर:
n-p-n ट्रांजिस्टर में आवेश वाहक मुक्त इलेक्ट्रॉन होते हैं तथा p-n-p ट्रांजिस्टर में आवेश वाहक कोटर होते हैं। परन्तु कोटरों की गतिशीलता से मुक्त इलेक्ट्रॉनों की गतिशीलता अधिक होती है। इसीलिए p-n-p की तुलना में n-p-n ट्रांजिस्टर अधिक उपयोगी है।

प्रश्न 24:
एक उभयनिष्ठ आधार प्रवर्धक में निर्गत परिपथ का लोड प्रतिरोध 600Ω तथा निवेशी परिपथ का प्रतिरोध 150Ω है। यदि धारा प्रवर्धन 0.90 हो, तो वोल्टता प्रवर्धन की गणना  कीजिए। (2010)
हल:
∵ वोल्टता प्रवर्धन A = α x प्रतिरोध लाभ =  α x [latex]\frac { { R }_{ l } }{ { R }_{ i } }[/latex]
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 14

प्रश्न 25:
एक ट्रांजिस्टर परिपथ की उत्सर्जक धारा में 1.8 मिली-ऐम्पियर का परिवर्तन करने पर संग्राहक धारा में 1.6 मिली-ऐम्पियर का परिवर्तन होता है। इसके लिए परिपथ की आधार धारा में परिवर्तन का मान ज्ञात कीजिए। (2012)
हल:
ΔiE = 1.8 मिली ऐम्पियर, ΔiC= 1.6  मिली ऐम्पियर
आधार धारा में परिवर्तन ΔiB = ΔiE – ΔiC
= 1.8-1.6
= 0.2 मिली ऐम्पियर

UP Board Solutions

प्रश्न 26:
उभयनिष्ठ आधार परिपथ में किसी ट्रांजिस्टर का धारा लाभ 0.98 है। यदि उत्सर्जक धारा में 5.0 मिली ऐम्पियर का परिवर्तन हो तो संग्राहक धारा में परिवर्तन ज्ञात कीजिए। (2015)
हल:
α  = 0.98, ΔiE = 5.0 मिलीऐम्पियर, ΔiC = ?
∴ ΔiC  = α .ΔiE = 0.98 x 5
= 4.9 मिली ऐम्पियर

प्रश्न 27:
एक ट्रांजिस्टर प्रवर्धक के लिए β = 30, लोड प्रतिरोध RL = 4kΩ तथा निवेशी प्रतिरोध Ri = 400 2 है। इसका वोल्टता प्रवर्धन ज्ञात कीजिए।
हल:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 28:
डिजिटल संकेत में कितने मान होते हैं?
उत्तर:
डिजिटल संकेत में केवल दो मान होते हैं।

प्रश्न 29:
बाइनरी संख्याओं 1001 तथा 101 का योग एवं अन्तर ज्ञात कीजिए  (2011)
हल:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 15

प्रश्न 30:
(a) बाइनरी संख्याओं 11011 तथा 1101 का योग बाइनरी पद्धति में ज्ञात कीजिए। (2013)
(b) बाइनरी संख्याओं 11010 तथा 1001का योग ज्ञात कीजिए। (2009, 12)
हल:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 31:
दशमलव संख्याओं 21 तथा 43 को उनके तुल्य बाइनरी संख्याओं में रूपान्तरित कीजिए। (2011)
हल:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 32:
मूल लॉजिक गेटों के नाम लिखिए।
उत्तर:
OR, AND तथा NOT गेट।।

प्रश्न 33:
AND, NOT, 08 गेट को लॉजिक गेट क्यों कहा जाता है?
उत्तर:
क्योंकि इनके निर्गम तथा निवेश के बीच एक तर्कपूर्ण सम्बन्ध होता है।

प्रश्न 34:
‘न’ द्वार को अन्य किस नाम से जाना जाता है तथा क्यों?
उत्तर:
“प्रतिलोमक द्वार’ क्योंकि यह निवेशी अवस्था का प्रतिलोम कर देता है।

UP Board Solutions

प्रश्न 35:
NOT गेट का परिपथ चिह्न बनाइए।  (2010, 17)
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 16

प्रश्न 36:
NOT गेट में कितने निवेश तथा कितने निर्गम होते हैं?
उत्तर:
1 निवेश तथा 1 निर्गमा

प्रश्न 37:
NOT गेट की सत्यता सारणी दीजिए।
उतर:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 17

प्रश्न 38:
OR गेट का तर्क प्रतीक (लॉजिक प्रतीक) दीजिए। (2009, 10, 15, 17)
उत्तर:

UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 39:
OR गेट की सत्यती सारणी दीजिए। (2009, 10, 11, 15, 17)
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 40:
OR गेट का बूलियन व्यंजक लिखिए। (2017)
उत्तर:
A + B = Y

प्रश्न 41:
नीचे दिये गये लॉजिक परिपथ में लॉजिक गेटों 1 व 2 को पहचानिए   (2009)
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 18
उत्तर:
(1) OR गेट तथा (2) NOT गेट।

UP Board Solutions

प्रश्न 42:
AND गेट का लॉजिक प्रतीक बनाइए।  (2009, 10, 17)
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 43:
AND गेट की सत्यता सारणी दीजिए। (2010, 12)
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 44:
AND गेट के लिए बूलियन व्यंजक तथा सत्यता सारणी लिखिए। (2009)
या
AND गेट का बूलियन एक्सप्रेशन लिखिए।
या
AND गेट का प्रतीक चिह्न, बूलियन व्यंजक एवं सत्यता सारणी बनाइए। (2016, 18)
उत्तर:
बूलियन व्यंजक   Y = A : B
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 45:
NAND गेट का प्रतीक चिह्न बनाइए तथा इसका बूलियन व्यंजक लिखिए। (2015)
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 46:
NOR गेट का लॉजिक प्रतीक बनाइए।
उतर:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 19

प्रश्न 47:
निम्न प्रदर्शित सत्यता सारणी किस गेट को व्यक्त करती है?
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
उत्तर:
NOR गेट।

प्रश्न 48:
बूलियन व्यंजक Y = A[latex]\overline { B }[/latex]+ B[latex]\overline { A }[/latex] दिया गया है। यदि A = 1 तथा B = 1 हो, तो Y का
मान ज्ञात कीजिए।
हल:
यदि A = 1
तथा B = 1
तब [latex]\overline { A }[/latex] = 0
तथा [latex]\overline { B }[/latex] = 0
∴ Y = 1(0) + 1(0) = 0+0= 0

लघु उत्तरीय प्रश्न

प्रश्न 1:
ऊर्जा बैण्ड के आधार पर चालक, अचालक एवं अर्द्धचालकों में अन्तर स्पष्ट कीजिए। (2017)
उत्तर:
चालक (Conductors)-“वे पदार्थ जिनमें वैद्युत आवेश आसानी से प्रवाहित हो सके तथा जिनमें मुक्त इलेक्ट्रॉन बड़ी संख्या में उपस्थित रहते हों, चालक कहलाते हैं। (UPBoardSolutions.com) जैसे-चाँदी, ताँबा, ऐलुमिनियम, सोना, पारा इत्यादि। चालकों का प्रतिरोध ताप-गुणांक धनात्मक होता है इसीलिए ताप के बढ़ने पर इनका वैद्युत प्रतिरोध बढ़ता है, परन्तु वैद्युत चालकता कम होती है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
अचालक (Insulators):
“वे पदार्थ जिनमें वैद्युत आवेश कठिनता चालन से प्रवाहित हो तथा जिनमें मुक्त इलेक्ट्रॉन नहीं होते अथवा कम संख्या में होते हैं, अचालक कहलाते हैं। इन पदार्थों के बाहरी कक्षा के (UPBoardSolutions.com) वजित ऊर्जा अन्तराल इलेक्ट्रॉन दृढ़तापूर्वक नाभिक से बँधे रहते हैं इसलिए। पर इनमें वैद्युत आवेशों का प्रबंह कठिनता से होता है। इनकी प्रतिरोधकता बहुत अधिक अर्थात् लगभग अनन्त होती है; जैसे—लकड़ी, ऐबोनाइट, काँच, अभ्रक आदि।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

अर्द्ध-चालक (Semi-conductors)–“वे पदार्थ जिनकी वैद्युत-चालकता चालकों एवं अचालकों के मध्ये होती है, अर्द्ध-चालक कहलाते हैं। जैसे-कार्बन, सिलिकॉन (Silicon) तथा जर्मेनियम अर्द्ध-चालक हैं। ये पदार्थ न तो पूर्ण रूप से चालक ही होते हैं और न ही पूर्ण रूप से अचालक। अर्द्ध-चालकों में बाहरी इलेक्ट्रॉन न तो परमाणु से इतनी दृढ़ता से बँधे होते हैं जितने कि अचालकों में
और ने इतने ढीले बँधे होते हैं जितने कि चालकों में इनका प्रतिरोध ताप-गुणांक ऋणात्मक होता है। इसीलिए ताप के बढ़ने पर इनका वैद्युत प्रतिरोध घटता है, परन्तु इनकी वैद्युत-चालकता ताप बढ़ने पर बढ़ती है तथा ताप घटने पर घटती है। परम शून्य ताप पर अर्द्ध-चालक एक आदर्श अचालक की भाँति व्यवहार करता है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 2:
किसी अर्द्धचालक को मादित करने से क्या तात्पर्य है? इस क्रिया से अर्द्धचालक की चालकता पर पड़ने वाले प्रभाव की व्याख्या कीजिए।
उत्तर:
एक ‘शुद्ध’ अर्द्धचालक, जिसमें कोई अपद्रव्य न मिला हो, ‘निज अर्द्धचालक’ कहलाता है। इस प्रकार, शुद्ध जर्मेनियम तथा सिलिकॉन अपनी प्राकृतिक अवस्था में निज़ अर्द्धचालक हैं। निज अर्द्धचालकों की वैद्युत चालकता अति अल्प होती है। परन्तु यदि किसी ऐसे पदार्थ की बहुत थोड़ी-सी मात्रा, जिसकी संयोजकता 5 अथवा 3 हो, शुद्ध जर्मेनियम (अथवा सिलिकॉन) क्रिस्टल में अपद्रव्य के रूप में मिश्रित कर (UPBoardSolutions.com) दें तो क्रिस्टल की चालकता काफी बढ़ जाती है। मिश्रित करने की क्रिया को ‘अपमिश्रण’ । या ‘मादित करना’ कहते हैं। उदाहरणार्थ, 108 जर्मोनियम परमाणुओं में 1 अपद्रव्य परमाणु मिश्रित कर देने पर, जर्मोनियम की चालकता 16 गुना तक बढ़ जाती है। ऐसे अर्द्धचालकों को बाह्य अथवा अपद्रव्य अथवा अपमिश्रित अर्द्धचालक कहते हैं। इन अर्द्धचालकों में मिश्रित किये जाने वाले अपद्रव्य की मात्रा को नियन्त्रित करके इच्छानुसार चालकता अर्जित की जा सकती है।

UP Board Solutions

प्रश्न 3:
n-प्रकार का अर्द्धचालक क्या है? इसकी रचना समझाइए। (2010)
या
n-टाइप अर्द्धचालक से क्या तात्पर्य है? (2012)
उत्तर:
n-टाइप अर्द्धचालक (n-Type Semi-conductor)-जब 5 संयोजकता वाला (अर्थात् पंच संयोजी) कोई अपद्रव्य; जैसे—आर्सेनिक, फॉस्फोरस, ऐण्टीमनी आदि शुद्ध जर्मेनियम अर्द्धचालक में मिला दिया जाता है, तो इस अशुद्ध अर्द्धचालक में अपद्रव्य पदार्थ के परमाणु के पाँच संयोजक इलेक्ट्रॉनों (UPBoardSolutions.com) में से चार इलेक्ट्रॉन इसके निकटतम चार जर्मेनियम परमाणुओं में प्रत्येक के एक-एक इलेक्ट्रॉन के साथ साझेदारी करके सह-संयोजक बन्ध बना लेते हैं तथा शेष पाँचवाँ संयोजक इलेक्ट्रॉन अशुद्ध क्रिस्टल में गति करने के लिए स्वतन्त्र रह जाता है (चित्र 14.22)। यह ऋण आवेश वाहक ही अर्द्धचालक में वैद्युत चालन के लिए उत्तरदारी है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
इस प्रकार शुद्ध जर्मेनियम में पंच संयोजी अपद्रव्य मिलाने से मुक्त इलेक्ट्रॉनों की संख्या बढ़ जाती है। जिससे अर्द्धचालक की वैद्युत चालकता भी बढ़ जाती है।
अशुद्ध अर्द्धचालक के सिरों के बीच वैद्युत विभवान्तर स्थापित करने से अर्द्धचालक में वैद्युत-क्षेत्र उत्पन्न हो जाता है। इसके कारण मुक्त इलेक्ट्रॉन, क्षेत्र की विपरीत दिशा में गति करने लगते हैं, जिससे अर्द्धचालक में धारा प्रवाह होने लगता है।
इस प्रकार के अपद्रव्य मिले अशुद्ध (UPBoardSolutions.com) अर्द्धचालक में आवेशवाहक ऋणावेशित मुक्त इलेक्ट्रॉन ही होते हैं, इसीलिए इस प्रकार के अशुद्ध अर्द्धचालक को  n-टाइप अर्द्धचालक कहते हैं।
n-टाईप अर्द्धचालक में मिला पंच संयोजी अपद्रव्य परमाणु मुक्त इलेक्ट्रॉन देता है। अत: इस प्रकार के अपद्रव्य परमाणुओं को दाता परमाणु (donor atoms) कहते हैं तथा n-टाइप शुद्ध अर्द्धचालक को दाता प्रकार का (donor type) अर्द्धचालक भी कहते हैं।
n-प्रकार अर्द्धचालक क्रिस्टल में जितने चलनशील इलेक्ट्रॉन होते हैं उतनी ही संख्या में स्थिर धनात्मक अपद्रव्यदाता आयन होते हैं।

प्रश्न 4:
एक Pnp सन्धि डायोड का अग्र अभिनत की स्थिति में प्रतिरोध 25Ω है। अग्र अभिनत विभव में कितना परिवर्तन किया जाए कि धारा में 2 मिली ऐम्पियर का परिवर्तन हो जाए ?
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
हल:
अग्र अभिनत स्थिति में p-n सन्धि डायोड का प्रतिरोध R = 25Ω तथा धारा में परिवर्तन ΔI = 2 मिली ऐम्पियर = 2 x 10-3 ऐम्पियर।।
माना अग्र अभिनत विभव में परिवर्तन ΔVहै।
R =  [latex]\frac { \Delta V }{ \Delta I }[/latex]
ΔV= R x ΔI = 25 ओम x 2 मिली ऐम्पियर
= 50 मिली ऐम्पियर

UP Board Solutions

प्रश्न 5:
फोटो डायोड प्रकाश संसूचक के रूप में कार्य करता है। इस कथन की पुष्टि कीजिए। (2017)
उत्तर:
फोटो-डायोड एक प्रकाश संवेदनशील अर्द्धचालक से बनी ऐसी p – n सन्धि है जो पश्च दिशिक होती है। यह डायोड सन्धि प्रकाश-प्रभाव (junction photo effect) अर्थात् किसी p-0 सन्धि पर आपतित प्रकाश के प्रभाव पर आधारित है।
फोटो-डायोड का निर्माण करने हेतु एक p-m सन्धि जिसका p-क्षेत्र काफी पतला (thin) व पारदर्शी हो, को एक काँच या प्लास्टिक के आवरण में इस प्रकार रखते हैं कि सन्धि के ऊपरी भाग पर प्रकाश सरलता से पहुँच सके। आवरण में प्रयुक्त प्लास्टिक के शेष बचे भागों पर कालिख अथवा काला (UPBoardSolutions.com) पेन्ट कर देते हैं। कभी-कभी इन भागों को धातु की चादरों से भी ढक दिया जाता है। यह सम्पूर्ण इकाई (unit) काफी सूक्ष्म लगभग 2 से 3 मिमी की कोटि की होती है।
फोटो-डायोड का कार्यकारी विद्युतीय परिपथ चित्र 14.24 प्रकाश (hν) में प्रदर्शित है। जब p-n सन्धि पर बिना प्रकाश डाले । पर्याप्त वोल्टेज (लगभग 0.1 वोल्ट) लगाकर पश्च दिशिक किया जाता है, तो सन्धि के दोनों ओर के अल्पसंख्यक वाहक सन्धि को पार करते हैं (क्योंकि पश्च दिशिक सन्धि अल्पसंख्यक वाहकों को सन्धि पार करने में सहयोग करती है)। जिसके फलस्वरूप एक संतृप्त (saturated) परन्तु लघु धारा (कुछ μ A की) प्रवाहित होने लगती है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
जिसकी दिशा सन्धि पर n-क्षेत्र से p-क्षेत्र की ओर होती है। इस धारा को अदीप्त धारा (dark current) कहते हैं। अब यदि इसी समय p-n सन्धि पर इतनी ऊर्जा का प्रकाश जिसका परिमाण सन्धि के निषिद्ध ऊर्जा-अन्तराल Eg से अधिक (hν > Eg) हो, डाला जाये, तो p-n सन्धि पर आपतित फोटॉन अर्द्धचालक पदार्थ के सहसंयोजी बन्धों (covalent bonds) को तोड़कर इलेक्ट्रॉन-कोटर युग्म उत्पन्न करने में सक्षम हो (UPBoardSolutions.com) जाते हैं। अत: सन्धि के समीप अल्पसंख्यक वाहकों का घनत्व बढ़ जाने के कारण सन्धि के पश्च दिशिक होने के फलस्वरूप भी जब ये वाहक सन्धि को पार करेंगे तो यह सन्धि पर पश्च दिशिक के कारण उत्पन्न धारा की प्रबलता को बढ़ा देंगे। जिसके परिणामस्वरूप परिपथ की कुल धारा का मान बढ़ जायेगा। इस धारा को प्रकाश-धारा (photo current or photoconductive current) कहते हैं तथा यह आपतित प्रकाश के फ्लक्स के साथ लगभग समानुपात में बढ़ती है। फोटो-डायोडं की सन्धि को प्रदीप्त करने के पश्चात् । सन्धि पर पहले से ही उपलब्ध संतृप्त धारा के मान में हुए परिवर्तन को ज्ञात करके सन्धि पर आपतित प्रकाश की तीव्रता की गणना की जा सकती है। इस प्रकार यह डायोड प्रकाश संसूचक (light detector) की भॉति व्यवहार करता है। इस डायोड का उपयोग प्रकाश संचालित कुंजियों (light operated switches), कम्प्यूटर पंच का (computer punched cards) आदि को पढ़ने में किया जाता है।

प्रश्न 6:
प्रकाश उत्सर्जक डायोड (LED) क्या है। एक परिपथ आरेख खींचिए और इसकी क्रियाविधि समझाइए। प्रचलित लैम्पों की तुलना में इसके लाभ बताइए।
या
LED क्या है? परिपथ बनाकर इसके (V-I) अभिलाक्षणिक को प्रदर्शित कीजिए। (2016)
उत्तर:
‘LED’ एक ऐसी युक्ति है जो बायसिंग बैटरी की विद्युतीय ऊर्जा का विकिरण ऊर्जा (दृश्य व अदृश्य प्रकाश व अवरक्त विकिरण) में परिवर्तन करती है। क्रियाविधि: जब LED को अग्र दिशिक किया जाता है, तो n-क्षेत्र के इलेक्ट्रॉन कोटर सन्धि के पार करके p-क्षेत्र में तथा p-क्षेत्र के बहुसंख्यक वाहक n-क्षेत्र में पहुँच जाते हैं। इस प्रकार सन्धि सीमा पर अल्पसंख्यक वाहकों का सान्द्रण साम्यावस्था से अधिक (UPBoardSolutions.com) हो जाता है। अतः पुनः साम्य स्थापित करने के लिए सन्धि सीमा के दोनों ओर ये अतिरिक्त अल्पसंख्यक वाहक बहुसंख्यक वाहकों से संयोजित हो जाते हैं। संयोजन की इस प्रक्रिया में मुक्त हुई ऊर्जा, विद्युत चुम्बकीय तरंगों (फोटॉनों) के रूप में बाहर आती है। अब ऐसे फोटॉन जिनकी ऊर्जा LED के पदार्थ के निषिद्ध ऊर्जा-बैण्ड की ऊर्जा के बराबर या उससे थोड़ी कम (hν < Eg) होती है, डायोड के बाहर आ जाते हैं। जैसे-जैसे अग्र धारा (forward current) का मान बढ़ता है उत्सर्जित प्रकाश की तीव्रता भी धीरे-धीरे बढ़कर महत्तम मान प्राप्त कर लेती है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
वे डायोड जिनका उपयोग संसूचन तथा शक्ति दिष्टकरण के लिए किया जाता है, अर्द्धचालकों, जैसे : जर्मेनियम व सिलिकॉन के बने होते हैं। परन्तु इन अंर्द्धचालकों से बने LED दृश्य क्षेत्र (visible region) के विकिरणों का उत्सर्जन करने में असमर्थ होते हैं। दृश्य प्रकाश उत्सर्जित करने वाले LED का निषिद्ध ऊर्जा-अन्तराल कम से कम 1.8 eV का होना चाहिए। जो कि अर्द्धचालकों में जर्मेनियम या सिलिकॉन किसी का भी नहीं होता।
प्रचलित लैम्पों की तुलना में लाभ
प्रचलित लैम्पों की तुलना में इसके निम्नलिखित लाभ हैं

  1.  LED की दक्षता प्रचलित लैम्पों से कई गुना अधिक होती है, क्योंकि इनके संचालन हेतु काफी कम वैद्युत शक्ति की आवश्यकता होती है।
  2. आकार में ये अपेक्षाकृत काफी छोटे होते हैं, अतः ये अधिक स्थान नहीं घेरते।
  3.  प्रचलित लैम्पों की तुलना में इनका (UPBoardSolutions.com) जीवन काल काफी अधिक होता है।
  4.  इनके पूर्ण प्रदीपन (full illumination) के लिए लगभग नगण्य समय की आवश्यकता होती है।
  5. अन्य प्रचलित लैम्पों की तुलना में LED से उत्सर्जित प्रकाश में ऊष्मीय ऊर्जा लगभग नगण्य होती | हैं। इस प्रकार कहा जा सकता है कि LED ठण्डा प्रकाश (cool light) देता है। साथ-ही-साथ
    यह पर्यावरण तथा पारिस्थितिक तन्त्र (ecosystem) को भी अधिक क्षति नहीं पहुंचाता है।

UP Board Solutions

प्रश्न 7:
एक n-p-n ट्रांजिस्टर में 10-6 सेकण्ड में 1010 इलेक्ट्रॉन उत्सर्जक में प्रवेश करते हैं।
2% इलेक्ट्रॉन आधार में क्षय हो जाते हैं। उत्सर्जक धारा (IE), आधार धारा (IB) तथा संग्राहक धारा (IC) के मान ज्ञात कीजिए।
हल:
यहाँ t=10-6 सेकण्ड में उत्सर्जक में प्रवेश करने वाले इलेक्ट्रॉनों की संख्या n=1010 तथा इलेक्ट्रॉन पर आवेश e=1.6 x 10-19
कूलॉम
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 8:
एक n-p-n ट्रांजिस्टर को उभयनिष्ठ उत्सर्जक विन्यास में जोड़ा गया है। इसमें संग्राहक संभरण 8 वोल्ट है तथा 8002 के लोड प्रतिरोध के ऊपर जो संग्राहक परिपथ में जोड़ा (UPBoardSolutions.com) गया है वोल्टता पात 0.8 वोल्ट है। यदि धारा प्रवर्धन गुणांक 25 हो, तो संग्राहक उत्सर्जक वोल्टता और आधार धारा ज्ञात कीजिए। यदि ट्रांजिस्टर का आन्तरिक प्रतिरोध 200Ω है. तो वोल्टता लाभ एवं शक्ति लाभ की गणना कीजिए। परिपथ आरेख भी खींचिए।
हल:
परिपथ आरेख चित्र 14.27 में प्रदर्शित है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 9:
उभयनिष्ठ उत्सर्जक धारा-लाभ (β) एवं उभयनिष्ठ आधार धारा-लाभ (α) के बीच सम्बन्ध स्थापित कीजिए।
उत्तर:
β तथा α के बीच सम्बन्ध
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 26

प्रश्न 10:
एक उभयनिष्ठ उत्सर्जक प्रवर्धक में आधार धारा में 50 माइक्रो-ऐम्पियर की वृद्धि होने पर संग्राहक धारा में 1.0 मिली-ऐम्पियर की वृद्धि हो जाती है। धारा लाभ β की गणना कीजिए। उत्सर्जक धारा में परिवर्तन भी ज्ञात कीजिए। (2017)
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 11:
किसी उभयनिष्ठ उत्सर्जक ट्रांजिस्टर का निवेशी प्रतिरोध 1000Ω है। इसकी आधार धारा में 10 μA का परिवर्तन करने से संग्राहक धारा में 2mA की वृद्धि हो जाती है। यदि परिपथ में प्रयुक्त लोड प्रतिरोध 5kΩ हो, तो प्रवर्धक के लिए गणना कीजिए
(a) धारा लाभ (Current gain)
(b) वोल्टता लाभ (Voltage gain)
हल:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 12:
उभयनिष्ठ उत्सर्जक ट्रांजिस्टर प्रवर्धक के लिए धारा लाभ 59 है। यदि उत्सर्जक धारा 6.0mA हो तो ज्ञात कीजिए (a) संग्राहक धारा, (b) आधार धारा।
हल:
यहाँ, B = 59; IE= 6.0mA
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 28
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 13:
उभयनिष्ठ उत्सर्जक ट्रांजिस्टर प्रवर्धक के लिए 2.0 kΩ संग्राहक प्रतिरोध के सिरों पर ऑडियो सिगनल वोल्टता 2.0 वोल्ट है। धारा प्रवर्धन गुणांक 100 मानते हुए 2.0V की VBB  सप्लाई के साथ श्रेणीबद्ध प्रतिरोध RB का मान क्या होना चाहिए ताकिd.c. आधार धारा सिगनल धारा की 10 गुनी हो। संग्राहक प्रतिरोध के सिरों पर भी d.c, विभव पतन ज्ञात कीजिए।(VBE = 0.6 वोल्ट)
हल:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 14:
तर्क (लॉजिक) गेट से आप क्या समझते हैं? (2012)
या
लॉजिक गेट क्या होते हैं ? (2013, 15)
या
निम्नलिखित सत्यता सारणी एक-एक निवेशी लॉजिक गेट के निर्गम को दिखाती है। प्रयुक्त तर्क गेट को पहचानिए तथा इसका तर्क प्रतीक बनाइए।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
उत्तर:
तर्क (लॉजिक) गेट: “वह डिजिटल परिपथ जो निवेश (input) तथा निर्गम (output) के बीच तर्कपूर्ण सम्बन्धों के अनुसार कार्य करता है, लॉजिक गेट कहलाता है।”
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 20
दी गयी सत्यता सारणी AND गेट की है। इसका तर्क प्रतीक चित्र 14.28 में दिखाया गया है।

प्रश्न 15:
नीचे दिये गये लॉजिक परिपथ के लिए सत्यता सारणी बनाइए।
या
दिए गए चित्र में लॉजिक परिपथ के लिए सत्यता सारणी बनाइए तथा इर का बुलियन व्यंजक लिखिए। (2012)
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 21
उत्तर:
चित्र 14.29 में दिया गया लॉजिक परिपथ तीन निवेश A, B, C वाले OR गेट तथा NOT गेट का संयोजन है। अतः यह लॉजिक परिपथ तीन निवेश वाले NOR गेट को व्यक्त करेगा। इसकी सत्यता सारणी प्राप्त करने के लिए
(a) यदि तीन निवेश A, B, C वाले OR गेट का निर्गम Y”हो तो इसकी सत्यता सारणी निम्नवत् होगी
जहाँ Y’ = A+ B+ c (बूलियन व्यंजक)
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
(b) उपर्युक्त निर्गम Y’ को NOT गेट का निवेश बनाया गया है; जिसका निर्गम Y है, अत: इसकी
सत्यता सारणी निम्नवत् होगी । जहाँ
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
इस प्रकार दिये गये लॉजिक परिपथ की सम्पूर्ण सत्यता सारणी निम्नवत् होगी
जहाँ Y = ([latex]\overline { A+B+C }[/latex]) (बूलियन व्यंजक)
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्न 16:
चित्र में प्रदर्शित Pव ९ गेटों के संयोजन से किस प्रकार का गेट प्राप्त होता है? (2017)
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 22
उत्तर:
NAND गेट
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 23

प्रश्न 17:
निम्नलिखित दशमलव संख्याओं के संगत तुल्य बाइनरी संख्याएँ ज्ञात कीजिए
(a) 17
(b) 25
(c) 556
(d) 255
हल:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

दीर्घ उत्तरीय प्रश्न

प्रश्न 1:
किसी सन्धि डायोड की अग्र-अभिनति तथा उत्क्रम-अभिनति की अवस्थाओं में धारा प्रवाह की व्याख्या कीजिए। (2009, 11)
या
उत्क्रम अभिनत सन्धि डायोड द्वारा अल्प धारा क्यों प्रवाहित होती है? (2014)
या
p – n सन्धि डायोड के लिए अग्र-अभिनति तथा उत्क्रम-अभिनति अवस्था में परिपथ चित्र खींचिए। (2012)
या
उपयुक्त परिपथों की सहायता से pm सन्धि डायोड में विद्युत धारा प्रवाह की व्याख्य कीजिए। (2013)
या
p – n सन्धि डायोड के लिए अग्र-दिशिक तथा पश्च-दिशिक अवस्था में परिपथ आरेख खींचिए। दो अवस्थाओं हेतु प्राप्त अभिलक्षण वक्रों को समझाइए। (2015, 17)
या
p-n संधि डायोड के लिए अग्र-दिशिक परिपथ आरेख बनाइए। (2017)
उत्तर:
सन्धि डायोड को बाह्य बैटरी से दो विभिन्न प्रकारों से जोड़ा जा सकता है, जिन्हें अग्र- अभिनति तथा उत्क्रम-अभिनति’ कहते हैं।
अग्र-अभिनति (Forward Biasing)—जब सन्धि डायोड केp-क्षेत्र को बाह्य बैटरी के धन सिरे से, तथा n-क्षेत्र को ऋण सिरे से जोड़ा जाता है तो सन्धि ‘अग्र-अभिनत’ (forward biased) कहलाती है [चित्र 14.31 (a)]। इस स्थिति में डायोड में एक बाह्य वैद्युत-क्षेत्र Ei स्थापित हो जाता है। जोकि p-क्षेत्र से n-क्षेत्र की ओर को दिष्ट होता है। क्षेत्र E, आन्तरिक वैद्युत-क्षेत्र E; से कहीं अधिक प्रबल होता है। अतः p-क्षेत्र में (धन) कोटर तथा n-क्षेत्र में इलेक्ट्रॉन दोनों ही सन्धि की ओर को चलने लगते हैं। (कोटर क्षेत्र E की दिशा में तथा इलेक्ट्रॉन E की (UPBoardSolutions.com) विपरीत दिशा में चलते हैं। ये कोटर तथा इलेक्ट्रॉन सन्धि के समीप पहुँचकर परस्पर संयोग करके विलुप्त हो जाते हैं। प्रत्येक इलेक्ट्रॉन- कोटर संयोग (combination) के लिए, -क्षेत्र में बैटरी के धन सिरे के समीप एक सह-संयोजक बन्ध टूट जाता है। इससे उत्पन्न कोटर तो सन्धि की ओर चलता है, जबकि इलेक्ट्रॉन, जोड़ने वाले तार (connecting wire) में से होकर बैटरी के धन सिरे में प्रवेश कर जाता है। ठीक इसी समय बैटरी के ऋण सिरे से एक इलेक्ट्रॉन मुक्त होकर n-क्षेत्र में प्रवेश करता है तथा सन्धि के समीप संयोग द्वारा विलुप्त हुए इलेक्ट्रॉन का स्थान ले लेता है।

इस प्रकार, बहुसंख्यक वाहकों की गति से सन्धि डायोड में वैद्युत धारा स्थापित हो जाती है। इसे ‘अग्र-धारा’ (forward current) कहते हैं। (इस बड़ी धारा के अतिरिक्त, अल्पसंख्यक वाहकों की गति से भी एक अल्प उत्क्रम-धारा स्थापित होती है, परन्तु यह लगभग नगण्य ही होती है।) जैसा कि चित्र 14.31 (a) से स्पष्ट है, बाह्य परिपथ में धारा केवल इलेक्ट्रॉनों की गति से स्थापित होती है। सन्धि पर आरोपित अग्र वोल्टेज तथा प्राप्त अग्र-धारा का ग्राफ चित्र 14.31 (b) में दिखाया गया है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

उत्क्रम-अभिनत (Reverse Biasing):
जब सन्धि डायोड के p-क्षेत्र को बाह्य बैटरी के ऋण सिरे से, तथा क्षेत्र को धन सिरे से जोड़ा जाता है तो सन्धि’उत्क्रम-अभिनत’ (reverse biased)
कहलाती है।
[चित्र 14.32 (a)]। इस स्थिति में बाह्य वैद्युत-क्षेत्र E, n-क्षेत्र से p-क्षेत्र की ओर को दिष्ट होता है, तथा इस प्रकार यह आन्तरिक प्राचीर क्षेत्र Eiकी सहायता करता (UPBoardSolutions.com) है। अब, p-क्षेत्र में कोटर तथा n-क्षेत्र में इलेक्ट्रॉन दोनों ही सन्धि से दूर जाने लगते हैं। अतः वे कभी भी सन्धि के समीप संयोग नहीं कर सकते (cannot combine)। स्पष्ट है कि डायोड में बहुसंख्यक वाहकों के कारण कोई धारा नहीं होती।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
परन्तु जब सन्धि उत्क्रम-अभिनत होती है तब सन्धि के आर-पार एक अति अल्प उत्क्रम धारा (≈ कुछ माइक्रोऐम्पियर) बहती है। यह ऊष्मीय-जनित (thermally generated) अल्पसंख्यक वाहकों (p-क्षेत्र में इलेक्ट्रॉन तथा n-क्षेत्र में कोटर) से उत्पन्न होती है जोकि वैद्युत क्षेत्र E के अन्तर्गत सन्धि को (UPBoardSolutions.com) पार करते हैं। चूंकि अल्पसंख्यक वाहकों की संख्या ऊष्मीय विक्षोभ पर निर्भर करती है, अतः उत्क्रम-धारा ताप पर बहुत अधिक निर्भर करती है तथा सन्धि का ताप बढ़ने पर बढ़ती है। उत्क्रम वोल्टेज तथा उत्क्रम-धारा के बीच ग्राफ चित्र 14.32 (b) में दिखाया गया है।

UP Board Solutions

प्रश्न 2:
p-n सन्धि डायोडों का प्रयोग करते हुए पूर्ण-तरंग दिष्टकारी का परिपथ चित्र बनाइए। इसकी कार्यविधि समझाइए। (2009, 10, 11, 15, 18)
या
p-n सन्धि डायोड का प्रयोग कर पूर्ण तरंग दिष्टकारी का परिपथ आरेख बनाइए। निर्गत तरंग-रूपों को भी दर्शाइए। (2014)
या
p-n सन्धि डायोड किसे कहते हैं? दो p – nसन्धि डायोडों को पूर्ण तरंग दिष्टकारी के रूप में कैसे प्रयुक्त किया जाता है? निवेशी व निर्गत वोल्टताओं के तरंग रूपों को देते हुए, सरल  परिपथ आरेख बनाकर इसकी कार्यविधि समझाइए। (2010, 14, 17)
या
परिपथ आरेख खींचकर समझाइए कि किस प्रकार प्रत्यावर्ती धारा को दिष्टधारा में परिवर्तित किया जाता है ? (2010)
या
परिपथ आरेख खींचकर समझाइए कि एक सन्धि डायोड पूर्ण तरंग दिष्टकारी की भाँति  कैसे कार्य करता है ? (2011)
या
p – n सन्धि डायोड का उपयोग पूर्ण तरंग दिष्टकारी के रूप में समझाइए। सम्बन्धित परिपथ भी खींचिए। (2013, 18)
या
परिपथ आरेख खींचकर pm सन्धि डायोड की पूर्ण तरंग दिष्टकारी के रूप में कार्यविधि समझाइए।  (2013, 14, 18)
या
दो p-n संधि डायोडों का उपयोग करके पूर्ण तरंग दिष्टकारी का परिपथ चित्र बनाइए तथा इसकी कार्य-विधि समझाइए। निवेशी तथा निर्गत तरंग रूप भी प्रदर्शित कीजिए। (2017)
उत्तर:
p-n सन्धि डायोड: “जब एक p-प्रकार के अर्द्धचालक क्रिस्टल को किसी विशेष विधि द्वारा
-प्रकार के अर्द्धचालक क्रिस्टल के साथ जोड़ दिया जाता है, तो जिस स्थान पर क्रिस्टल एक-दूसरे से जुड़ते हैं, वह सन्धि कहलाती है। इस संयोजन के वैद्युत लक्षण डायोड वाल्व की (UPBoardSolutions.com) भाँति होते हैं, अतः इस संयोजन को सन्धि डायोड कहते हैं।
पूर्ण-तरंग दिष्टकरण में निवेशी प्रत्यावर्ती वोल्टेज के दोनों अर्द्ध-चक्रों के दौरान निर्गत धारा प्राप्त होती
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
इसमें दो सन्धि डायोड इस तरह प्रयुक्त किये जाते हैं कि पहला डायोड धारा के पहले आधे चक्र का दिष्टकरण करता है। और दूसरा डायोड दूसरे आधे चक्र का। निवेशी । इसका परिपथ चित्र 14.33 में दिखाया गया A.C. है। A.C. स्रोत को एक ट्रांसफॉर्मर की १ निर्गत प्राथमिक कुण्डली से (UPBoardSolutions.com) जोड़ते हैं तथा
वोल्ट्रता द्वितीयक कुण्डली के सिरों A व B के बीच दोनों डायोड़ों 1 तथा 2 के p-क्षेत्रों को जोड़ा जाता है तथा n-क्षेत्रों को आपस में जोड़ दिया जाता है। लोड प्रतिरोध RL को द्वितीयक कुण्डली के केन्द्रीय निष्कास (centre tap) T तथा n-क्षेत्रों के बीच जोड़ते हैं। निवेशी वोल्टेज के पहले आधे चक्र के दौरान जब ट्रांसफॉर्मर काA सिरा, T के, सापेक्ष धनात्मक तथा B सिरा T के सापेक्ष ऋणात्मक होता है तब डायोड
(b) अग्र-अभिनत होता है और धारा प्रवाहित  होने देता है, जबकि डायोड 2 उत्क्रम-अभिनत होता है और धारा प्रवाहित नहीं होने देता। अतः लोड-प्रतिरोध Rमें (UPBoardSolutions.com) धारा C से D की ओर बहती है। दूसरे आधे चक्र के दौरान A सिरा T के सापेक्ष ऋणात्मक होता है तथा B सिरा धनात्मक होता है। अतः अब डायोड 1 उत्क्रम-अभिनत तथा डायोड 2 अग्र-अभिनत होता है। अब धारा डायोड 2 में से प्रवाहित होती है तथा R,, में पुन: धारा C से D की ओर को बहती है। RL में धारा की दिशा दोनों अर्द्धचक्रों में एक ही ओर रहती है; अतः R. पर निर्गत वोल्टता की दिशा एक ही प्राप्त होती है तथा पूर्ण-तरंग के लिए वोल्टता प्राप्त होती रहती है।

UP Board Solutions

प्रश्न 3:
p-n सन्धि डायोड का उपयोग करके अर्द्धतरंग दिष्टकारी का परिपथ चित्र खींचिए तथा इसकी कार्यविधि समझाइए।  (2009, 11, 17) 
या
p-n सन्धि का उपयोग करके अर्द्धतरंग दिष्टकारी का परिपथ चित्र खींचिए। निवेशी तथा निर्गत वोल्टताओं के तरंगरूप दिखाइए। क्या निर्गत वोल्टता शुद्ध दिष्ट वोल्टता होती है? (2016)
या
p – n सन्धि डायोड को अर्द्धतरंग दिष्टकारी के रूप में कैसे प्रयोग में लाया जाता है? सरल परिपथ आरेख बनाकर कार्यविधि समझाइए। निवेशी तथा निर्गत वोल्टताओं के तरंग-रूप दिखाइए। (2014)
या
p-n सन्धि डायोड क्या होता है? परिपथ आरेख खींचकर p-n सन्धि डायोड का अर्द्ध तरंग दिष्टकारी के रूप में कार्यविधि समझाइए। निवेशी तथा निर्गत वोल्टताओं के तरंग रूपों को दर्शाइए। (2016)
उत्तर:
p-n सन्धि डायोड:
“जब एक p प्रकार के अर्द्धचालक क्रिस्टल को किसी विशेष विधि द्वारा 71-प्रकार के अर्द्धचालक क्रिस्टल के साथ जोड़ दिया जाता है, तो जिस स्थान पर क्रिस्टल एक-दूसरे से जुड़ते हैं, वह सन्धि कहलाती है। इस संयोजन के वैद्युत लक्षण डायोड वाल्व की भाँति होते हैं, अत: इस संयोजन को pen सन्धि डायोड कहते हैं।
p-n सन्धि डायोड एक अर्द्धतरंग दिष्टकारी (Half wave rectifier) के रूप में:
p-n सन्धि डायोड का अर्द्धतरंग दिष्टकारी परिपथ चित्र 14.34 (a) में तथा निवेशी (input) एवं निर्गत (output) तरंग रूपों को चित्र 14.34 (b) में प्रदर्शित किया गया है।
इसमें जिस प्रत्यावर्ती वोल्टता को दिष्टीकृत करना सन्धि डायोड होता है, उसे एक ट्रांसफॉर्मर की प्राथमिक कुण्डली के सिरों के बीच जोड़ देते हैं। ट्रांसफॉर्मर की द्वितीयक कुण्डली का एक सिरा सन्धि डायोड के p-प्रकार के निवेशी निर्गत क्रिस्टल अर्थात् p-क्षेत्र से तथा दूसरा सिरा लोड वोल्टता वोल्टता प्रतिरोध RL के द्वारा सन्धि डायोड के n-प्रकार के क्रिस्टल अर्थात् n-क्षेत्र से जोड़ दिया जाता है। दिष्ट निर्गत वोल्टेज लोड RL के सिरों के बीच प्राप्त किया जाता है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits
कार्यविधि (Working):
जब निवेशी AC वोल्टेज के आधे चक्र में ट्रांसफॉर्मर की द्वितीयंक कुण्डली का निवेशी प्रत्यावर्ती सिगनल A सिरा B सिरे के सापेक्ष धनात्मक होता है, तो सन्धि डायोड अग्र-अभिनत (forward biased) होता है। इसके परिणामस्वरूप लोड प्रतिरोध RL .में प्राप्त दिष्टकृत निर्गत सिगनल निर्गत वोल्टता में केवल धन भाग ही प्राप्त होते हैं। इस  स्थिति में लोड़ प्रतिरोध में धारा C से D की ओर प्रवाहित होती है। निवेशी AC वोल्टेज के अगले आधे चक्र में ट्रांसफॉर्मर की द्वितीयक कुण्डली का A सिरा B सिरे के सापेक्ष ऋणात्मक होता है, तो (UPBoardSolutions.com) सन्धि डायोड उत्क्रम-अभिनत (reverse biased) हो जाता है। इस दशा में प्रतिरोध RL में धारा शून्य रहती है। इस प्रकार मुख्यतः धारा निवेशी वोल्टता के पहले आधे चक्र में ही प्रवाहित होती है तथा शेष आधे चक्र कट जाते हैं। इस प्रकार उच्चावचित (fluctuating) दिष्टधारा लोड प्रतिरोध के आर-पार (across) प्राप्त होती रहती है। चित्र 14.34 (b) के निचले भाग में धारा को तरंग रूप दर्शाया गया है जिसमें थोड़ी-थोड़ी दूर पर (अर्थात् थोड़ी-थोड़ी देर में) धारा के एकदिशीय स्पन्द (pulses) दिखाई देते हैं। इस प्रकारे सन्धि डायोड एक अर्द्धतरंग दिष्टकारी की भाँति कार्य करता है। निर्गत वोल्टता शुद्ध दिष्ट वोल्टता नहीं होती है बल्कि एक दिशीय स्पन्दों के रूप में होती है।

प्रश्न 4:
जेनर डायोड क्या है? जेनर डायोड का उपयोग वोल्टेज रेगुलेटर के रूप में परिपथ आरेख की सहायता से समझाइए।  (2014)
या
जेनर डायोड क्या होता है? इसका प्रतीक चिन्ह प्रदर्शित कीजिए। जेनर डायोड का वोल्टता नियंत्रक के रूप में प्रयोग परिपथ बनाकर समझाइए। (2015, 16, 17)
या
जेनर डायोड क्या होता है? इसको वोल्टेज रेगुलेशन में किस प्रकार प्रयोग करते हैं? परिपथ आरेख बनाकर समझाइए। (2018)
उत्तर:
जेन्प डायोड उत्क्रम अभिनत गहन अपमिश्रित सिलिकॉन अथवा जर्मेनियम p–n सन्धि डायोड होता है जो भंजक क्षेत्र में कार्य करता है। इसका यह नाम इसके आविष्कारक वैज्ञानिक क्लारेन्स जेनर (Clarence Zener) के नाम पर ही रखा गया है। इसके परिपथ में पश्च धारा (reverse current) को (UPBoardSolutions.com) बाहरी प्रतिरोध और डायोड के ऊर्जा क्षय द्वारा सीमित किया  जाता है। इसमें सिलिकॉन को उसके उच्च ताप स्थायित्व और धारा क्षमता के बैटरी प्रतिरोध कारण जर्मेनियम की तुलना में वरीयता दी जाती है। इसका परिपथ चित्र एवं संकेत चित्र 14.35 में दर्शाया गया है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
जेनर डायोड एक ऐसा डायोड है, जो सामान्य डायोडों की भाँति अग्र दिशिक होने पर अग्रधारा (forward current) को अपने में से प्रवाहित  होने की अनुमति (UPBoardSolutions.com) प्रदान तो करता ही है इसके साथ ही उत्क्रम अभिनति होने पर भी पश्च धारा आसानी से बह सकती है यदि आरोपित वोल्टता एक निश्चित मान से अधिक हो।

वोल्टता नियन्त्रक के रूप में जेनर डायोड
सिद्धान्त:
जब जेनर डायोड को उत्क्रम अभिनत भंजक क्षेत्र में प्रचालित करते हैं तो धारा में अधिक परिवर्तन के लिए इसके सिरों पर वोल्टता नियत बनी रहती है। यह भंजक विभवान्तर VZ के बराबर होती है। यही विभव नियन्त्रक (नियामक) के रूप में इसके प्रयोग का सिद्धान्त है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

परिपथ आरेख एवं कार्यविधि: चित्र 14.36 में जेनर डायोड को विभव नियामक के रूप में प्रयुक्त करने का परिपथ आरेख दर्शाया गया है। अनियन्त्रित
नियन्त्रित यह लोड प्रतिरोध R,, के सिरों के बीच उत्क्रम निवेश । अभिनति अवस्था में जोड़ा जाता है। इसके प्रतिरोध श्रेणीक्रम में प्रतिरोध R जोड़ते हैं। यदि निवेशी चित्र 14.36 वोल्टता बढ़ती है तो R तथा जेनर डायोड में धारा बढ़ेगी। इससे R के सिरों की वोल्टता बढ़ती है, जबकि जेनर डायोड की वोल्टता में कोई परिवर्तन नहीं होता क्योंकि भंजक क्षेत्र में होने के कारण इसकी जेनर वोल्टता नियत रहती है, भले ही (UPBoardSolutions.com) इसमें धारा बढ़ती हो। इसी प्रकार यदि निवेशी वोल्टता घटती है तो R के सिरों की वोल्टता घटेगी तथा जेनर डायोड की वोल्टता में कोई परिवर्तन नहीं आयेगा। इस प्रकार निवेशी वोल्टता में किसी भी प्रकार का परिवर्तन R की वोल्टती में वैसा ही परिवर्तन कर देता है जबकि जेनर डायोड की वोल्टता नियत रहती है। इस प्रकार जेनर डायोड एक विभव नियामक (voltage regulator) के रूप में कार्य करता है। चित्र 14.37 में,
V0 = VZ = IZ .RZ = ILRL
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
तथा VZ =  Vin – IR
चित्र 14.37 में जेनर डायोड विभव नियामक के लिए निर्गत वोल्टता तथा निवेशी वोल्टता के बीच ग्राफ प्रदर्शित किया गया है। ग्राफ से स्पष्ट है कि उत्क्रम भंजक वोल्टता VZ के पश्चात् निर्गत वोल्टता नियत रहती है।

UP Board Solutions

प्रश्न 5:
ट्रांजिस्टर क्या होता है? आवश्यक चित्र बनाकर p-n-p ट्रांजिस्टर की रचना तथा कार्यविधि समझाइए।
या
p- n-p ट्रांजिस्टर में विद्युत चालन की क्रिया को समझाइए। इसमें आधार पतला क्यों रखा जाता है ? (2011)
या
उभयनिष्ठ उत्सर्जक p-n-p ट्रांजिस्टर प्रवर्धक की कार्यविधि परिपथ आरेख खींचकर समझाइए। (2014, 17)
या
p-n-p ट्रांजिस्टर की संरचना का वर्णन कीजिए तथा परिपथ चित्र देते हुए समझाइए कि यह उभयनिष्ठ उत्सर्जक विन्यास में वोल्टता प्रवर्धक का कार्य कैसे करता है? (2017)
उत्तर:
ट्रांजिस्टर: दो p-n सन्धियों को सम्पर्क में रखकर बनायी गयी वह युक्ति जो एक ट्रायोड वाल्व की भाँति व्यवहार करती है, ट्रांजिस्टर कहलाती है।

p-n-p ट्रांजिस्टर
रचना: इसमें n-टाइप अर्द्धचालक की एक पतली परत दो p-टाइप अर्द्धचालकों के छोटे-छोटे क्रिस्टलों के बीच में दबाकर रखी होती है [चित्र 14.38 (a)]। इस पतली परत को ‘आधार’ (base) कहते हैं तथा इसके बायें तथा दायें वाले क्रिस्टलों को क्रमशः ‘उत्सर्जक’ (emitter) और ‘संग्राहक (collector) कहते हैं। आधार के सापेक्ष उत्सर्जक को धन-विभव पर तथा संग्राहक को ऋण-विभव पर रखा जाता है। (UPBoardSolutions.com) स्पष्ट है कि उत्सर्जक-आधार (p-n) सन्धि अग्र-अभिनत अर्थात् अल्प प्रतिरोध वाली सन्धि है, जबकि आधार-संग्राहक (n-p) सन्धि उत्क्रम-अभिनत अर्थात् उच्च प्रतिरोध वाली सन्धि है। चित्र 14.38 (b) में ट्रांजिस्टर का प्रतीक प्रदर्शित है। इसमें बाण की दिशा वैद्युत धारा (अर्थात् कोटरों की गति) की दिशा बताती है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
कार्यविधि: चित्र 14.39 में एक p-n-p ट्रांजिस्टर का उभयनिष्ठ आधार परिपथ प्रदर्शित है। उत्सर्जक-आधार (p-n) सन्धि अग्र-अभिनत विभव VEB (1 वोल्ट से कम) पर रखते हैं और आधार-संग्राहक (n-p) सन्धि को । कुछ अधिक उत्क्रम-अभिनत विभव VCB (कुछ वोल्ट) पर रखते हैं। चूँकि उत्सर्जक (p-क्षेत्र) अग्र-अभिनत है; ।अत: इसमें उपस्थित धन ‘कोटर’ आधार की ओर चलते हैं। और ‘आधार’ (n-क्षेत्र) में उपस्थित इलेक्ट्रॉन उत्सर्जक की ओर चलते हैं।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
आधार के पतला होने के कारण इसमें प्रवेश करने वाले कोटरों में अधिकांश (लगभग 98%) इसे पार करके संग्राहक तक पहुँच जाते हैं, जबकि अवशेष (लगभग 2%) कोटर आधार में उपस्थित इलेक्ट्रॉनों से  संयोग कस्ते हैं। कोटर के इलेक्ट्रॉन से संयोग करते ही एक नया इलेक्ट्रॉन बैटरी VEB के ऋण (UPBoardSolutions.com) सिरे से निकलकर आधार में प्रवेश करता है। ठीक इसी क्षण एक इलेक्ट्रॉन उत्सर्जक में से टर्मिनल E के द्वारा निकलकर VCB के धन सिरे पर पहुँचता है। इससे उत्सर्जक E में एक कोटर उत्पन्न हो जाता है जो आधार की ओर चलना प्रारम्भ कर देता है। स्पष्ट है कि आधार-उत्सर्जक परिपथ में एक क्षीण-धारा बहने लगती है।

संग्राहक (उत्क्रम-अभिनत है तथा कोटरों के चलने में सहायक है) में प्रवेश कर जाने वाले कोटर C टर्मिनल तक पहुँच जाते हैं। किसी कोटर के C पर पहुँचते ही, बैटरी VEB के ऋण सिरे से एक इलेक्ट्रॉन आकर इसे उदासीन कर देता है। पुनः ठीक इसी क्षण एक इलेक्ट्रॉन उत्सर्जक में से टर्मिनल E के द्वारा निकलकर, बैटरी VCBके धन सिरे पर पहुँचता है। इससे उत्सर्जक में एक कोटर उत्पन्न हो जाती है जो आधार की ओर चलना प्रारम्भ कर देता है। स्पष्ट है कि संग्राहक-उत्सर्जक परिपथ में वैद्युत धारा बहती है। अतः p-n-p ट्रांजिस्टर (UPBoardSolutions.com) के भीतर धारा-प्रवाह कोटरों के उत्सर्जक से संग्राहक की ओर चलने के कारण होता है और बाह्य परिपथ में इलेक्ट्रॉनों के चलने के कारण होता है। टर्मिनल B से चलने वाली धारा को ‘आधार-धारा’ iB तथा टर्मिनल C से बाहर जाने वाली धारा को ‘संग्राहक-धारा’ iC कहते हैं। iB तथा iC मिलकर टर्मिनले E में प्रवेश करती हैं; अतः इसे ‘उत्सर्जक-धारा’ iE कहते हैं। स्पष्ट है कि
iE = iB +iC
अतः p-n-p ट्रांजिस्टर के अन्दर धारा-प्रवाह कोटरों के उत्सर्जक से संग्राहक की ओर चलने के कारण होता है।
आधार के बहुत पतला होने के कारण इसमें संयुक्त होने वाले कोटर-इलेक्ट्रॉनों की संख्या बहुत कम होती है। इस कारण लगभग सभी कोटर जो उत्सर्जक से आधार (UPBoardSolutions.com) में प्रवेश करते हैं, संग्राहक तक पहुँच जाते हैं। अतः iC (संग्राहक-धारा), iE (उत्सर्जक-धारा) से कुछ ही कम होती है। आधार को पतला लिये जाने का कारण है कि कोटर तथा इलेक्ट्रॉन इसमें कम-से-कम संयोग कर सके।

प्रश्न 6:
n-p-n ट्रांजिस्टर की रचना एवं कार्यविधि समझाइए। (2015, 16, 18)
या
नामांकित परिपथ आरेख बनाकर n-p-n ट्रांजिस्टर की कार्यविधि समझाइए। (2011)
या
उपयुक्त परिपथ की सहायता से n-p-n ट्रांजिस्टर की कार्यविधि का उल्लेख कीजिए। (2012)
उत्तर:
n-p-n ट्रांजिस्टर की रचना: इसमें p-टाइप अर्द्धचालक की एक पतली परत दो n-टाइप अर्द्धचालकों के छोटे-छोटे क्रिस्टलों के बीच में दबाकर रखी जाती है, [चित्र 14.40 (a)]] आधार के सापेक्ष उत्सर्जक को ऋण-विभव पर तथा संग्राहक को धन-विभव पर रखा जाता है। (UPBoardSolutions.com) स्पष्ट है कि उत्सर्जक-धारा (n-p) सन्धि अग्र-अभिनत है और आधार-संग्राहक (p-n) सन्धि उत्क्रम- अभिनत है। {चित्र 14.40 (b) में ट्रांजिस्टर का प्रतीक प्रदर्शित है जिसमें बाण की दिशा वैद्युत धारा अर्थात् इलेक्ट्रॉनों की गति के विपरीत की दिशा बताती है।

कार्यविधि: चित्र 14.41 में n-p-n ट्रांजिस्टर का उभयनिष्ठ आधार परिपथ प्रदर्शित किया गया है। इसके दोनों n- क्षेत्रों में चलनशील इलेक्ट्रॉन हैं, जबकि बीच के पतले p-क्षेत्र में +ve कोटर होते हैं। इसमें बायीं ओर के उत्सर्जक आधार (n-p) सन्धि को बैटरी से अग्र-अभिनत -विभव Ve अल्प मात्रा में दिया जाता है, जबकि दायीं ओर के आधार संग्राहक (p-n) सन्धि को बैटरी से उत्क्रम-अभिनत विभव
VC अधिक मात्रा में दिया जाता है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
अग्र-अभिनत होने के कारण उत्सर्जक (n-क्षेत्र) से इलेक्ट्रॉन आधार की ओर गति करते हैं, जबकि आधार से कोटर उत्सर्जक की ओर। आधार के पतले होने के कारण अधिकतर इलेक्ट्रॉन, जो इसमें प्रवेश करते हैं, संग्राहक C तक पहुँच जाते हैं। इनमें से कुछ ही इलेक्ट्रॉन आधार में उपस्थित (UPBoardSolutions.com) कोटरों से। संयोग करते हैं। जैसे ही कोई इलेक्ट्रॉन किसी कोटर से संयोग करता है वैसे ही एक नया इलेक्ट्रॉन बैटरी ve के -ve सिरे से निकलकर टर्मिनल E के द्वारा उत्सर्जक में प्रवेश करता है। ठीक इसी समय Ve का +ve सिरा आधार से एक इलेक्ट्रॉन प्राप्त करता है। इससे आधार में एक कोटर उत्पन्न हो जाता है तथा संयोग के कारण नष्ट हुए कोटर की क्षतिपूर्ति हो जाती है। इस प्रकार आधार उत्सर्जक परिपथ में धारा प्रवाहित होने लगती है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
जो इलेक्ट्रॉन संग्राहक में प्रवेश कर जाते हैं वे उत्क्रम-अभिनत के कारण टर्मिनल C को छोड़कर बैटरी VC के धन सिरे में प्रवेश करता है वैसे ही बैटरी Ve के ऋण सिरे से एक इलेक्ट्रॉन उत्सर्जक में प्रवेश करता है। इस प्रकार संग्राहक-उत्सर्जक परिपथ में भी धारा प्रवाहित होने लगती है। (UPBoardSolutions.com) आधार टर्मिनल B में प्रवेश करने वाली क्षीण धारा को आधार-धारा iB तथा संग्राहक टर्मिनल C में प्रवेश करने वाली धारा को संग्राहक-धारा iC कहा जाता है। ये दोनों धाराएँ मिलकर उत्सर्जक टर्मिनल E से निकलती हैं जो कि उत्सर्जक-धारा iE है।
अतः  iE = iB +iC
अत: n-p-n ट्रांजिस्टर के अन्दर तथा बाह्य परिपथ में धारा का प्रवाह इलेक्ट्रॉनों के कारण ही होता है।

प्रश्न 7:
n-p-n ट्रांजिस्टर स्विच के रूप में कैसे कार्य करता है? आवश्यक परिपथ चित्र द्वारा कार्यविधि स्पष्ट कीजिए।  (2015)
उत्तर:
हम जानते हैं कि अग्र दिशिक (p-n) सन्धि डायोड से धारा आसानी से प्रवाहित हो सकती है। परन्तु एक पश्च दिशिक (reverse biased) डायोड धारा के प्रवाह में सार्थक व्यवधान उत्पन्न करता है। डायोड का यह आचरण एक स्विच के समतुल्य है। इसी प्रकार यदि एक ट्रांजिस्टर को उसकी संस्तब्ध (cut off) व संतृप्तावस्था (Satruation state) में उपयोग करें तो ट्रांजिस्टर भी एक इलेक्ट्रॉनिक स्विच (switch) की भाँति प्रयोग किया जा सकता है।
ट्रांजिस्टर को स्विच की तरह प्रयोग करने का सरल परिपथ चित्र 14.42 (a) में प्रदर्शित है। चित्र 14.42 में प्रयुक्त ट्रांजिस्टर n-p-n ट्रांजिस्टर है जो उभयनिष्ठ उत्सर्जक विन्यास में (UPBoardSolutions.com) जुड़ा हुआ है। RB व RC क्रमशः आधार व संग्राहक प्रतिरोध हैं जो ट्रांजिस्टर को दिशिक करने हेतु प्रयोग किये गये हैं।Vi निवेशी संकेत/विभव (input signal) है जो आधार-उत्सर्जक टर्मिनलों के बीच आरोपित है तथा निर्गत संकेत (output signal) V0 संग्राहक उत्सर्जक टर्मिनलों के बीच के विभवान्तर VCE का मापन एक वोल्टमीटर V की सहायता से प्राप्त किया जा सकता है। संग्राहक प्रतिरोध RC के बीच बह रही संग्राहक-धारा iC का मापन RC के श्रेणी क्रम में लगे मिलीअमीटर mA की सहायता से किया जा सकता है।
चित्र 14.42 (a) से किरचॉफ के नियमानुसार,
Vi= iBRB + VB …….(1)
…(1) VC= iCRC + VCE
अथवा  VCE = VCC – iCRC
VCE = V0
अतः V0 = VCC – iCRC ……….(2)
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

(i) अब, यदि निवेशी विभव Vi का मान आधार-उत्सर्जक (B – E) सन्धि के विभव-प्राचीर (barrier voltage) जो जर्मेनियम तथा सिलिकॉन से बने ट्रांजिस्टर के लिए लगभग 0.6V – 0.7V के बीच होता है, से कम हो, तो B – E सन्धि के अवदिशिक (unbiased) होने के कारण ट्रांजिस्टर की तीनों धाराएँ (iB,iC व iE) शून्य होंगी। अत: संग्राहक-धारा iC के शून्य होने के कारण संग्राहक-प्रतिरोध RC के सिरों पर कोई विभव पतन नहीं होगा। जिससे ट्रांजिस्टर के संग्राहक-टर्मिनल का विभव veer व समीकरण (2) से टर्मिनल C व (UPBoardSolutions.com) E के बीच उपलब्ध विभवान्तर VCE = (= V0) VCC के बराबर ही होगा। ट्रांजिस्टर की यह अवस्था उसकी संस्तब्ध अवस्था (cut off state) कहलाती है। चूंकि इस अवस्था में ट्रांजिस्टर से होकर कोई धारा प्रवाहित नहीं होती, अत: ट्रांजिस्टर की यह अवस्था किसी स्विच की खुली-स्थिति (off state) के तुल्य है [चित्र 14.42 (b)]
(ii) अब यदि निवेशी विभव V को इस प्रकार समायोजित करें कि ट्रांजिस्टर संस्तब्ध अवस्था से सीधे संतृप्तावस्था (saturation state) में पहुँच जाये तो ऐसी दशा में संतृप्त संग्राहक-धारा
iC(= [latex]\frac { { V }_{ CC } }{ { R }_{ C } }[/latex] )के संग्राहक-प्रतिरोध Re में बहने के कारण बैटरी का सम्पूर्ण विभव VCC, RC
के सिरों पर ही पतित हो जाता है। जिससे संग्राहक-टर्मिनल C पर उपलब्ध विभव शून्य तथा उत्सर्जक-टर्मिनल E के भू-सम्पर्कित होने के कारण उसका विभव भी शून्य होता है। इस प्रकार ट्रांजिस्टर के संग्राहक व उत्सर्जक (C-E) टर्मिनल समान विभव पर होते हैं। यह स्थिति किसी विद्युतीय परिपथ के संयोजक तार के तुल्य है। इस स्थिति में ट्रांजिस्टर में धारा प्रवाह सुगमता से हो जाता है। यह अवस्था किसी स्विच की बन्द-स्थिति के समतुल्य मानी जा सकती है।

UP Board Solutions

प्रश्न 8:
n-p-ट्रांजिस्टर की प्रवर्धक के रूप में कार्यों की संक्षिप्त व्याख्या कीजिए। (2015, 16, 17)
या
उभयनिष्ठ उत्सर्जक विन्यास में n-p-n ट्रांजिस्टर का अभिलाक्षणिक वक्र प्राप्त करने हेतु आवश्यक परिपथ आरेख बनाइए। निवेशी एवं निर्गत अभिलाक्षणिक वक्रों से प्राप्त निष्कर्षों का उल्लेख कीजिए।  (2017)
उत्तर:
n-p-n ट्रांजिस्टर उभयनिष्ठ-उत्सर्जक प्रवर्धक की भाँति: इसका परिपथ आरेख चित्र 14.43 में दर्शाया गया है। आधार-उत्सर्जक (B-E) परिपथ को अग्र दिशिक तथा संग्राहक-उत्सर्जक (C-E) परिपथ को उत्क्रम अभिनत करने के लिये, बैटरियों VBE; तथा VCC की ध्रुवताएँ (polarities), p-n-p ट्रांजिस्टर परिपथ के सापेक्ष विपरीत हैं।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
n-p-n ट्रांजिस्टर परिपथ का मूल सिद्धान्त,,प्रतिरोध तथा विभिन्न लाभ वही हैं जो कि p-n-p ट्रांजिस्टर परिपथ के हैं।
उभयनिष्ठ-उत्सर्जक n-p-n ट्रांजिस्टर प्रवर्धक परिपथ में भी निर्गत वोल्टेज सिगनल तथा निवेशी वोल्टेज सिगनल के बीच 180° का कलान्तर हैं। इसे निम्न प्रकार समझाया (UPBoardSolutions.com) जा सकता है
माना कि निवेशी वोल्टेज सिगनल का पहला अर्द्ध-चक्र धनात्मक है। चूंकि आधार उत्सर्जक के सापेक्ष धनात्मक है, अत: पहले अर्द्ध-चक्र के दौरान, आधार-उत्सर्जक परिपथ का अग्र दिशिक वोल्टेज बढ़ता है। इससे उत्सर्जक-धारा iE, और इस कारण संग्राहक-धारा iC बढ़ती हैं। iC के बढ़ने से संग्राहक-उत्सर्जक वोल्टेज VE घटता है (क्योंकि VCE = VCC-iCRL)। चूँकि संग्राहक बैटरी VCC के धन टर्मिनल से जुड़ा है, अत: संग्राहक वोल्टेज के घटने का अर्थ है कि संग्राहक कम धनात्मक हो जाता है। इस प्रकार, निवेशी a.c, वोल्टेज सिगनल के धनात्मक अर्द्ध-चक्र के दौरान संग्राहक पर प्राप्त निर्गत वोल्टेज सिगनल का अर्द्ध-चक्र ऋणात्मक होता है।
निवेशी वोल्टेज सिगनल के ऋणात्मक अर्द्ध-चक्र के दौरान आधार-उत्सर्जक परिपथ का अग्र दिशिक वोल्टेज घटता है। इससे उत्सर्जक-धारा iE , और इस कारण संग्राहक-धारा iC घटती है। iC के घटने से संग्राहक-उत्सर्जक वोल्टेज VCE बढ़ता है, अर्थात् संग्राहक अधिक धनात्मक हो जाता है। इस प्रकार, निवेशी a.c. वोल्टेज सिगनल के ऋणात्मक अर्द्ध-चक्र के दौरान संग्राहक पर प्राप्त निर्गत वोल्टेज सिगनल का अर्द्ध-चक्र धनात्मक होता है।
स्पष्ट है कि उभयनिष्ठ-उत्सर्जक प्रवर्धक में, निर्गत वोल्टेज सिगनल तथा निवेशी वोल्टेज सिगनल में 180° का कलान्तर होता है।

प्रश्न 9:
परिपथ चित्र की सहायता से n-p-n ट्रांजिस्टर की दोलनी क्रिया समझाइए। (2014)
या
n-p-n ट्रांजिस्टर का दोलित्र के रूप में प्रयोग परिपथ बनाकर समझाइए। (2017)
उत्तर:
चित्र 14.44 में उभयनिष्ठ उत्सर्जक विन्यास में एक n-p-n ट्रांजिस्टर के एक दोलित्र की तरह उपयोग का परिपथ आरेख प्रदर्शित है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
चित्र 14.44 चित्र में L1C1 एक टैंक परिपथ तथा L2 एक पुनर्भरण कुण्डली है। संधारित्र C2 दोलन के लिए एक निम्न प्रतिघात पथ (low reactance path) प्रदान करता है। श्रेणी क्रम में जुड़े प्रतिरोधों R1 व  R2 है, की सहायता से ट्रांजिस्टर को आवश्यक अभिनति (necessary biasing) प्रदान की जाती है। RE उत्सर्जक प्रतिरोध है जो ट्रांजिस्टर सन्धि के ताप को नियन्त्रित करता है। CE एक संधारित्र है जो प्रवर्धित संकेतों का आधार-उत्सर्जक परिपथ में ऋणात्मक पुनर्भरण (negative feedback) (UPBoardSolutions.com) रोकता है। बैटरी VCC पूरे परिपथ को d.c. शक्ति प्रदान करती है। परिपथ में उत्पन्न दोलनों को प्रेरण कुण्डली L3 के सिरों पर प्राप्त किया जाता है।
कार्य प्रणाली: जैसे ही कुन्जी (Switch) S को बन्द किया जाता है टैंक परिपथ का संधारित्र C1 आशित होना शुरू हो जाता है। जब यह पूर्णावेशित हो जाती है तो यह प्रेरण कुण्डली Lके कारण अनावेशित होना शुरू कर देता है जिसके परिणामस्वरूप L1C1 टैंक परिपथ में अवमन्दित दोलन प्रारम्भ हो जाते हैं। यह दोलन पुनर्भरण कुण्डली L2 में (जोकि L1 के ही साथ उभयनिष्ठ लौह क्रोड पर लपेटी है चित्र 14.44 में बिन्दुवत् चाप का यही अभिप्राय है) L1Cपरिपथ के ही समान आवृत्ति का एक विद्युत वाहक बल (फैराडे के नियमानुसार) उत्पन्न कर देती है। L2 में उत्पन्न इस वि० वी० बल का परिमाण इस कुण्डली में फेरों की संख्या तथा इस कुण्डली का कुण्डली L के सापेक्ष कपलिंग (coupling) पर निर्भर करता है। अब L2 के सिरों पर उत्पन्न इस विभवान्तर को ट्रांजिस्टर प्रवर्धक के आधार व उत्सर्जक (B – E) टर्मिनलों के बीच लगा देते हैं जहाँ यह प्रवर्धित होकर (UPBoardSolutions.com) पुनर्भरण की प्रक्रिया के माध्यम से टैंक परिपथ L1C1 को पुनः प्राप्त हो जाता है जिससे जो भी क्षतियाँ हुई होती हैं उनकी पूर्ति हो जाती है।
इस प्रकार परिपथ बिना अवमन्दित हुए दोलन करता रहता है जिसकी आवृत्ति समीकरण    f = [latex]\frac { 1 }{ 2\pi \sqrt { { L }_{ 1 }{ C }_{ 1 } } }[/latex]  से दी जाती है। यहाँ ज्ञात हो कि पुनर्भरण की क्रिया में टैंक परिपथ को प्राप्त फीडबैक विभव निवेशी विभव के साथ समान कला में होता है।

व्याख्या:
फैराडे के नियमानुसार (e=-L [latex]\frac { di }{ dt }[/latex] )  L व L के बीच उत्पन्न वि० वा० बल के विपरीत कलाओं (180° का कलान्तर) में होते हैं। पुन: L के सिरों पर उत्पन्न यह विभवान्तर उभयनिष्ठ उत्सर्जक ट्रांजिस्टर प्रवर्धक के आधार व उत्सर्जक सन्धियों के बीच प्रवर्धन के लिए लगा दिया जाता है। इस प्रकार ट्रांजिस्टर के निर्गत विभव व निवेशी विभव में पुनः 180° का कलान्तर हो जाता  है। अत: प्रवर्धक से निर्गत विभव को टैंक परिपथ का निवेशी विभव बनने तक इसमें हुआ कुल कलान्तर = 180° + 180° = 360° का हो जाता है। अर्थात् टैंक परिपथ को पुनर्भरित विभव टैंक परिपथ के निवेशी विभव के साथ समान कला में होता है।

UP Board Solutions

प्रश्न 10:
NOT गेट की परिभाषा दीजिए। इसके बूलियन व्यंजक तथा सांकेतिक रूप लिखिए। इस गेट को व्यवहार में किस प्रकार प्रयुक्त किया जाता है? इसका तर्क प्रतीक एवं सत्यता-सारणी दीजिए।  (2011, 18)
या
NOT गेट के लिए लॉजिक प्रतीक, सत्यता सारणी एवं बूलियन व्यंजक लिखिए तथा बताइए कि व्यवहार में यह गेट किस प्रकार प्रयुक्त होता है ?
(2010, 12, 18)
या
NOT गेट का प्रतीक चिह्न बनाइए तथा इसका बूलियन व्यंजक लिखिए।(2012, 14, 17)
या
NOT गेट की उपयुक्त आरेख की सहायता से सत्यता सारणी बनाइए। (2013) 
या
NOT गेट का लॉजिक चिह्न, बूलियन व्यंजक एवं सत्यता सारणी दीजिए। (2014, 15)
या
NOT गेट का संकेत चिह्न बनाकर इसकी सत्यता सारणी भी बनाइए। (2016)
उत्तर:
NOT गेट-इसमें केवल एक निवेश (input) तथा एक निर्गत (output) होता है। इसका बूलियन व्यंजक इस प्रकार है
Ā = Y।
जिसे ‘NOT A equalsY’ पढ़ा जाता है। इसका अर्थ है कि Y,A का ऋणक्रमण (negation) अथवा उत्क्रमण (inversion) है। चूंकि बाइनरी पद्धति में केवल दो अंक 0 तथा 1 होते हैं, अतः Y = 0 यदि = 1 तथा Y = 1 यदि A = 0. NOT गेट का लॉजिक प्रतीक चित्र 14.45 (a) में दर्शाया गया है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
व्यवहार में NOT गेट प्राप्त करना (Realisation of NOT Gate): व्यवहार में, हम NOT गेट को डायोडों को प्रयुक्त करके प्राप्त नहीं कर सकते। इसके लिए ट्रांजिस्टर प्रयुक्त करना होगा। चित्र 14.46 में NOT गेट का वैद्युत परिपथ दर्शाया गया है जिसमें n-p-n ट्रांजिस्टर प्रयुक्त किया (UPBoardSolutions.com) गया है। ट्रांजिस्टर के आधार B को एक प्रतिरोधक Bp के द्वारा निवेशी टर्मिनल A से जोड़ा गया है तथा उत्सर्जक E को भू-सम्पर्कित कर दिया गया है। संग्राहक C को एक अन्य प्रतिरोधक R तथा 5y बैटरी के द्वारा भू-सम्पर्कित किया गया है। निर्गत Y, संग्राहक C का पृथ्वी के सापेक्ष वोल्टेज है। NOT गेट की कार्यप्रणाली की दो सम्भव स्थितियाँ निम्न प्रकार हैं

  1. जब निवेशी टर्मिनल A भू-सम्पर्कित होती है (A = 0), तब ट्रांजिस्टर का. आधार B भी  भू-सम्पर्कित हो जाता है। इसका अर्थ है कि आधार-उत्सर्जक (B ~ E) सन्धि अवअभिनत । (unbiased) रहती है परन्तु आधार-संग्राहक (B-C) सन्धि उत्क्रम-अभिनत हो जाती है। चूंकि उत्सर्जक-धारा शून्य है तथा आधार-धारा भी शून्य है, अतः संग्राहक-धारा भी शून्य होगी। इस स्थिति में, (UPBoardSolutions.com) ट्रांजिस्टर संस्तब्ध (cut-off) अवस्था में होता है। अत: संग्राहक C पर वोल्टेज, पृथ्वी के सापेक्ष, +5v होगा जो कि संग्राहक परिपथ में जुड़ी बैटरी का वोल्टेज है। अत: Y = 1. यह स्थिति सत्यता सारणी [चित्र 14.45 (b)] की पहली पंक्ति में व्यक्त की गयी है।
  2.  जब निवेशी टर्मिनल A को 5V बैटरी के धन टर्मिनल से जोड़ा जाता है (A = 1), तब आधार-उत्सर्जक (B-E) सन्धि अग्र-अभिनत हो जाती है। इस दशा में उत्सर्जक-धारा, आधार-धारा तथा संग्राहक-धारा तीनों विद्यमान होती हैं। प्रतिरोधक RB व RC इस प्रकार चुने जाते हैं कि इस व्यवस्था में बड़ी संग्राहक-धारा प्राप्त हो। इस स्थिति में ट्रांजिस्टर संतृप्तता (saturation) की अवस्था में होता है। अग्र-अभिनति के कारण, RC में विभव-पतन ठीक 5V होता है, जो कि संग्राहक-परिपथ में जुड़ी 5V बैटरी के कारण होने वाले विभव-पतन के ठीक बराबर तथा विपरीत है। इस प्रकार C पर वोल्टेज शून्य है। अत: Y = 0, यह स्थिति सत्यता सारणी [चित्र 14.45 (b)] की दूसरी पंक्ति में व्यक्त की गयी है।
    UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

स्पष्ट है कि NOT गेट में यदि निवेशी 0 है, तो निर्गत 1 है तथा इसका उल्टा। इसकी सत्यता सारणी चित्र 14.45 (b) में प्रदर्शित है।

प्रश्न 11:
बूलियन बीजगणित में AND गेट को किस प्रकार प्रकट किया जाता है? इसका लॉजिक संकेत बताइए। इसे व्यवहार में किस प्रकार प्रयुक्त किया जाता है?  (2011)
या
AND गेट के लिए लॉजिक प्रतीक, सत्यता सारणी बनाइए तथा बूलियन व्यंजक लिखिये एवं बताइये कि इसे व्यवहार में दो penसन्धि डायोडों से प्रयुक्त करके कैसे प्राप्त किया जा सकता है ? (2010)
या
‘AND’ गेट का लॉजिक प्रतीक, बूलियन व्यंजक एवं सत्यता-सारणी बनाइए। (2012, 14, 17)
या
‘AND’ गेट के लिए सत्यता सारणी बनाइए। यह गेट व्यवहार में सन्धि डायोड प्रयुक्त करके किस प्रकार प्राप्त किया जा सकता है । (2013)
या
AND गेट का प्रतीक चिन्ह एवं सत्यता सारणी बनाइए। (2017)
उत्तर:
AND गेट: यह एक द्वि-निवेशी (two-input) तथा एकल-निर्गत (one-output) लॉजिक गेट है। यह दो निवेशी चरों A तथा B को संयुक्त करके एक निर्गत चर Y देता है। इसका बुलियन व्यंजके इस प्रकार है
A . B=Y
जिसे ‘A AND B equals Y’ पढ़ा जाता है। इसका लॉजिक संकेत चित्र 14.47 (a) में दर्शाया गया है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
व्यवहार में AND गेट प्राप्त करना (Realisation of AND Gate): व्यवहार में, AND गेट दो p- n सन्धि डायोडों D1  व D2 से निर्मित वैद्युत परिपथ से प्राप्त किया जा सकता है (चित्र 14.48)। प्रतिरोधक R एक 5V बैटरी के धन टर्मिनल से स्थायी रूप से जुड़ा है। निवेशी टर्मिनल A व B एक अन्य 5V बैटरी की सहायता से 0 V (स्तर 0) अथवा 5V (स्तर 1) पर रखे जा सकते हैं। इस बैटरी का ऋण टर्मिनल भू-सम्पर्कित है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
निवेशियों A व B के चार सम्भव संयोग हैं

  1.  जब निवेशी टर्मिनल A व B दोनों भू-सम्पर्कित हैं (A = 0, B = O), तब दोनों डायोड D1 व D2 अग्र-अभिनत होने के कारण चालित होते हैं। यदि डायोड आदर्श हैं, तब इनमें कोई विभव-पतन नहीं होता। अतः प्रतिरोधक R में 5V का विभव-पतन होता है तथा इसका सिरा C, पृथ्वी के सापेक्ष शून्य विभव पर होता है। इस प्रकार, निर्गत Y, जो कि प्रतिरोधक R के सिरे C पर वोल्टेज है, शून्य होता है (Y = 0)। यह स्थिति सत्यता सारणी [चित्र 14.47 (b)] की पहली
    पंक्ति में व्यक्त की गयी है।
  2. जब निवेशी टर्मिनल A भू-सम्पर्कित है तथा B, 5V बैटरी के धन टर्मिनल से जुड़ा है। (A = 0, B = 1), तब डायोड D1 चालित होता है परन्तु D2 चालित नहीं होता (क्योकि यह अग्र-अभिनत नहीं है)। यदि D1 आंदर्श है, तब इसमें कोई विभव-पतन नहीं होता। अत: प्रतिरोधक R में 5V का (UPBoardSolutions.com) विभव-पतन होता है तथा इसका सिरा C पृथ्वी के सापेक्ष, शून्य विभव पर होता है। अतः निर्गत Y पुन: शून्य होता है (Y = 0)। यह स्थिति सत्यता सारणी [चित्र 14.47 (b)] की दूसरी पंक्ति में व्यक्त की गयी है।
  3. जब निवेशी टर्मिनल A. 5V बैटरी के धन टर्मिनल से जुड़ा है तथा B भू-सम्पर्कित है। (A = 1, B = 0), तब डायोड D2 चालित होता है। यदि यह डायोड आदर्श है, तब इसमें कोई विभव-पतन नहीं होता। अत: पुन: प्रतिरोधक R में 5V का विभव-पतन होता है तथा इसका सिरा C पृथ्वी के सापेक्ष, शून्य विभव पर होता है। अतः निर्गत Y अब भी शून्य होता है (Y = 0)। यह स्थिति सत्यता सारणी [चित्र 14.47 (b)] की तीसरी पंक्ति में व्यक्त की गयी है।
  4.  जब टर्मिनल A व B दोनों 5V बैटरी के धन टर्मिनल से जोड़े जाते हैं (A = 1, B = 1), तब कोई भी डायोड चालित नहीं होता तथा प्रतिरोधक R में धारा नहीं होती। (UPBoardSolutions.com) अत: प्रतिरोधक का ऊपरी सिरा C उसी विभव पर होता है जिस पर कि उसका निचला सिरा होता है, अर्थात् पृथ्वी के सापेक्ष, +5 V पर। इस प्रकार, अब निर्गत सिरा Y भी + 5V पर होता है (Y = 1)। यह स्थिति सत्यता सारणी । [चित्र 14.47 (b)] की अन्तिम पंक्ति में व्यक्त की गयी है।
    स्पष्ट है कि AND गेट में, यदि दोनों निवेशी 1 हैं तभी निर्गत भी 1 होता है, अन्यथा निर्गत 0 होता है।

प्रश्न 12:
NAND गेट और NOR गेट क्या हैं? इनके लॉजिक प्रतीक तथा सत्यता सारणी दीजिए। (2017)
या
NOR गेट का लॉजिक प्रतीक बनाइए और इसका बूलियन व्यंजक लिखिए। (2014, 16, 17)
या
NOR गेट का लॉजिक चिह्न, बुलियन व्यंजक एवं सत्यता सारणी दीजिए। (2014, 17)
उत्तर:
NAND गेट तथा NOR गेट को सार्वत्रिक गेट भी कहते हैं। इनका प्रयोग करके पुनः मूल लॉजिक गेट (OR, AND तथा NOT) भी प्राप्त किये जा सकते हैं।
1. NAND गेट:
यह मूल लॉजिक गेट AND गेट तथा NOT गेट का संयोजन है। इसमें AND
गेट के निर्गम को NOT गेट का निवेश बना दिया जाता है [चित्र 14.49 (a)]। इसका तर्क प्रतीक [चित्र 14.49 (b)} में प्रदर्शित है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
2. NOR गेट:
यह मूल लॉजिक गेट OR गेट तथा NOT गेट का संयोजन है। इसमें OR गेट के निर्गम को NOT गेट का निवेश बना दिया जाता है [चित्र 14.50 (a)]इसका तर्क प्रतीक [चित्र 14.50 (b)] में प्रदर्शित है।
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 24
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

प्रश्नं 13:
A व B, OR गेट तथा NAND गेट के निवेशी तरंग प्रतिरूपचित्र में प्रदर्शित हैं। दोनों गेटों के निर्गत प्रतिरूप (Y) अपनी उत्तर पुस्तिका में दर्शाइए।
(2014)
या
नीचे दिखाए गए निवेश A तथा B के लिए NAND गेट के निर्गत तरंग रूप को स्केच कीजिए। (2016)
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits
हल:
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 25
UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

We hope the UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits (अर्द्धचालक इलेक्ट्रॉनिकी: पदार्थ, युक्तियाँ तथा सरल परिपथ) help you. If you have any query regarding UP Board Solutions for Class 12 Physics Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits (अर्द्धचालक इलेक्ट्रॉनिकी: पदार्थ, युक्तियाँ तथा सरल परिपथ), drop a comment below and we will get back to you at the earliest.

UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

UP Board Solutions for Class 12 Physics Chapter 13 Nuclei (नाभिक) are part of UP Board Solutions for Class 12 Physics. Here we have given UP Board Solutions for Class 12 Physics Chapter 13 Nuclei (नाभिक).

Board UP Board
Textbook NCERT
Class Class 12
Subject Physics
Chapter Chapter 13
Chapter Name Nuclei (नाभिक)
Number of Questions Solved 121
Category UP Board Solutions

UP Board Solutions for Class 12 Physics Chapter 13 Nuclei (नाभिक)

अभ्यास के अन्तर्गत दिए गए प्रश्नोत्तर

अभ्यास के प्रश्न हल करने में निम्नलिखित आँकड़े आपके लिए उपयोगी सिद्ध होंगे :
e= 1.6 x 10-19C,                                                    N = 6.023 x 1023 प्रति मोल
[latex ]\frac { 1 }{ 4\pi { \varepsilon }_{ 0 } }[/latex] = 9 x 109 Nm/c2                                         k= 1.381 x 1023 J°K-1
1 MeV = 1.6×10-13J                                            1u = 931.5 MeV/c2
1 year = 3.154 x 107s
mH = 1.007825u                                                mn = 1.008665u )
m( [latex]\frac { 4 }{ 2 }[/latex]He) = 4.002603 u                                       me= 0.000548u

UP Board Solutions

प्रश्न 1:
(a) लीथियम के दो स्थायी समस्थानिकों को [latex]_{ 3 }^{ 6 }{ Li }[/latex] एवं [latex]_{ 3 }^{ 7 }{ Li }[/latex] की बहुलता का प्रतिशत
क्रमशः 7.5 एवं 92.5 हैं। इन समस्थानिकों के द्रव्यमान क्रमशः 6.01512 u एवं 7,01600u हैं। लीथियम का परमाणु द्रव्यमान ज्ञात कीजिए। ।
(b) बोरॉन के दो स्थायी, समस्थानिक [latex]_{ 5 }^{ 10 }{ B }[/latex] एवं [latex]_{ 5 }^{ 11 }{ B }[/latex] हैं। उनके द्रव्यमान क्रमशः 10.01294u एवं 11.00931u एवं बोरॉन का परमाणु भार 10.811u है। [latex]_{ 5 }^{ 10 }{ B }[/latex] एवं [latex]_{ 5 }^{ 11 }{ B }[/latex] की बहुलता ज्ञात कीजिए।
हल:
(a) माना लीथियम के किसी नमूने में 100 परमाणु लिए गए हैं, तब इनमें 7.5 परमाणु [latex]_{ 3 }^{ 6 }{ Li }[/latex] के तथा 92.5 परमाणु [latex]_{ 3 }^{ 7 }{ Li }[/latex] के होंगे।
∴ 100 परमाणुओं का द्रव्यमान = (7.5 x 6.01512+ 92.5 x 7.01600) u
= (45,1134 + 648.98) u= 694.0934u
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei
= [latex]\frac { 694.0934 }{ 100 }[/latex]
= 6.940934u
≈ 6.94lu

(b) माना बोरॉन के दो समस्थानिकों की बहुलता क्रमश: x% तथा y% है, तब
x + y = 100  …….(1)
यदि बोरॉन के 100 परमाणु लिए जाएँ तो इनमें x परमाणु [latex]_{ 5 }^{ 10 }{ B }[/latex] के तथा y परमाणु [latex]_{ 5 }^{ 11 }{ B }[/latex] के होंगे।
∴ बोरॉन का परमाणु द्रव्यमान
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 1
या 10.811 x 100 = 10.01294 x + 11.00931 (100 – x) [∵ x + y = 100
⇒ 1081.1- 1100.931 = 10.012943x – 11.00931x
⇒ – 19.831 = – 0.99637x
∴ x = [latex]\frac { -19.831 }{ – 099837 }[/latex] =19.9
∴  y = 100- x = 100 – 19.9 = 80.1
अत: बोरॉन में [latex]_{ 5 }^{ 10 }{ B }[/latex] तथा [latex]_{ 5 }^{ 11 }{ B }[/latex] समस्थानिकों की बहुलता प्रतिशत क्रमश: 19.9 तथा 80.1 हैं।

प्रश्न 2.
नियॉन के तीन स्थायी समस्थानिकों की बहुलता क्रमशः 90.51%, 0.27% एवं 9.22% है। इन समस्थानिकों के परमाणु द्रव्यमान क्रमशः 19.99u 20.99u एवं 21.99u हैं। नियॉन का औसत परमाणु द्रव्यमान ज्ञात कीजिए।
हल:
यदि नियॉन के 100 परमाणु लिए जाएँ तो उनमें नियॉन के तीन समस्थानिकों के क्रमश: 90. परमाणु, 0.27 परमाणु तथा 9.22 परमाणु होंगे।
∴ नियॉन का औसत परमाणु द्रव्यमान
= [latex]\frac { (90.51x 19.99+ 0.27 x 20.99+ 9.22 x 21.99) u }{ 100 }[/latex]
= [latex]\frac { (1809.2949 + 5.6673 + 202.7478) u }{ 100 }[/latex]
= [latex]\frac { 2017.71 }{ 100 }[/latex]
= 20.177 u ≈ 20.18u

UP Board Solutions

प्रश्न 3.
नाइट्रोजन नाभिक ([latex]_{ 7 }^{ 14 }{ N }[/latex] ) की बन्धन-ऊर्जा MeV में ज्ञात कीजिए। mN = 14.00307u mH = 1.00783u, mn = 1.00867u]
हल:
[latex]_{ 7 }^{ 14 }{ N }[/latex] में प्रोटॉन = Z = 7 तथा न्यूट्रॉन
= (A – Z) = (14 – 7) = 7
न्यूक्लिऑनों का कुल द्रव्यमान = 7 x mH + 7 x mn
= (7 x 1.00783 +7 x 1.00867) u
= 14.1155 u
∴ द्रव्यमान क्षति
Δm = न्यूक्लिऑनों का द्रव्यमान –  [latex]_{ 7 }^{ 14 }{ B }[/latex] नाभिक का द्रव्यमान
= 14.11550 u – 14.00307 u = 0.11243 u
अतः बन्धन ऊर्जा EB = Δm के तुल्य ऊर्जा
= 0.11243 x 931 MeV
= 104.67 MeV (∵1u = 931 Mev)

प्रश्न 4:
निम्नलिखित आँकड़ों के आधार पर [latex]_{ 26 }^{ 56 }{ Fe }[/latex]एवं [latex]_{ 83 }^{ 209 }{ Bi }[/latex] नाभिकों की बन्धन-ऊर्जा MeV
में ज्ञात कीजिए। m([latex]_{ 26 }^{ 56 }{ Fe }[/latex]) = 55.934939u, m ([latex]_{ 83 }^{ 209 }{ Bi }[/latex]) = 208:980388u
हल:
दिया है, प्रोटॉन का द्रव्यमान mH = 1.007825u
न्यूट्रॉन का द्रव्यमान mn= 1.008665u

(i) [latex]_{ 26 }^{ 56 }{ Fe }[/latex] नाभिक का द्रव्यमान mFe= = 55.934939u
इस नाभिक में 26 प्रोटॉन तथा (56 – 26) = 30 न्यूट्रॉन हैं।
∴ न्यूक्लिऑनों का द्रव्यमान = 26 mH + 30mn
= 26 x 1.007825 + 30 x 1.008665
= 26.20345 + 30.25995 = 56.4634u
∴ द्रव्यमान क्षति Δm = न्यूक्लिऑनों का द्रव्यमान – नाभिक का द्रव्यमान
= 56.4634 – 55.934939 = 0.528461u
∴ [latex]_{ 26 }^{ 56 }{ Fe }[/latex] नाभिक की बन्धन-ऊर्जा = Δm x 931 = 0.528461 x 931.5 MeV
= 492.26 MeV
∴ बन्धन-ऊर्जा प्रति न्यूक्लिऑन = [latex]\frac { 492.26 }{ 56 }[/latex]
= 8.79 MeV/ न्यूक्लिऑन

(ii) [latex]_{ 83 }^{ 209 }{ Bi }[/latex] नाभिक का द्रव्यमान mBi= 208.980388u
इस नाभिक में 83 प्रोटॉन तथा 126 न्यूट्रॉन हैं।
∴ न्यूक्लिऑनों का द्रव्यमान = 83mH +126mn
= 83 x 1.007825 + 126 x 1.008665
= 83.649475+ 127.091790
= 210.741260 u
∴ नाभिक की द्रव्यमान-क्षति Δm = 210.741260 – 208.980388
= 1.760872u
∴ नाभिक की बन्धन ऊर्जा = Δm x 931.5 MeV
= 1.760872 x 931.5
= 1640.26 MeV
∴ बन्धन-ऊर्जा प्रति न्यूक्लिऑन = [latex]\frac { 1640.26 }{ 209 }[/latex]= 7.85 MeV/ न्यूक्लिऑन

UP Board Solutions

प्रश्न 5:
एक दिए गए सिक्के का द्रव्यमान 3.0 g है। उस ऊर्जा की गणना कीजिए जो इस सिक्के के सभी न्यूट्रॉनों एव प्रोटॉनों को एक-दूसरे से अलग करने के लिए आवश्यक हो। सरलता के | लिए मान लीजिए कि सिक्का पूर्णतः [latex]_{ 29 }^{ 63 }{ Cu }[/latex] परमाणुओं का बना है। ([latex]_{ 29 }^{ 63 }{ Cu }[/latex] का द्रव्यमान = 82,92960u)।
हल:
[latex]_{ 29 }^{ 63 }{ Cu }[/latex] में प्रोटॉन (Z) = 29, न्यूट्रॉन = 63 – 29= 34
∴ न्यूक्लिऑनों का कुल द्रव्यमान
= 29 प्रोटॉनों का द्रव्यमान + 34 न्यूट्रॉनों का द्रव्यमान
= (29 x 1.00783+ 34 x 1.00867) u = 63.52185 u
∴ द्रव्यमान क्षति Δm = न्यूक्लिऑनों का द्रव्यमान – [latex]_{ 29 }^{ 63 }{ Cu }[/latex] नाभिक का द्रव्यमान
= 63.52185 u – 62.92960 u = 0.59225 u
∴ [latex]_{ 29 }^{ 63 }{ Cu }[/latex] नाभिक की बन्धन ऊर्जा
EB = 0.53225 x 931 MeV = 551.385 MeV
m = 3.0 ग्राम में परमाणुओं (नाभिकों) की संख्या
= [latex]\frac { m }{ M }[/latex] x आवोगाद्रो संख्या
=  [latex]\frac { 3 }{ 63 }[/latex]  x 6.02 x 1023 = 2.86 x 1022
∴  सिक्के के सभी न्यूट्रॉनों तथा प्रोटॉनों को एक-दूसरे से अलग करने के लिए आवश्यक ऊर्जा
= 2.86 x 1022 x EB
= 2.86 x 1022 x 551.385 MeV
= 1.6 x 1025 MeV

प्रश्न 6:
निम्नलिखित के लिए नाभिकीय समीकरण लिखिए
(i) [latex]_{ 88 }^{ 226 }{ Ra }[/latex] का α- क्षय
(ii) [latex]_{ 94 }^{ 242 }{ Pu }[/latex] का α- क्षय
(iii) [latex]_{ 15 }^{ 32 }{ P }[/latex] P का β – क्षय
(iv) [latex]_{ 210 }^{ 83 }{ Bi }[/latex] का β -क्षय
(v) [latex]_{ 6 }^{ 11 }{ C }[/latex]  का β+ -क्षय
(vi)  [latex]_{ 43 }^{ 97 }{ Tc }[/latex]  Tc का β+ -क्षय
(vii) [latex]_{ 54 }^{ 120 }{ Xe }[/latex] 120Xe का इलेक्ट्रॉन अभिग्रहण
हल:
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 7:
एक रेडियोऐक्टिव समस्थानिक की अर्धायु T वर्ष है। कितने समय के बाद इसकी ऐक्टिवता, प्रारम्भिक ऐक्टिवता की (a) 3.125%, तथा (b) 1% रह जाएगी।
हल:
(a) माना समस्थानिक की प्रारम्भिक रेडियोऐक्टिवता = R0
माना समयान्तराल n अद्धयुकालों के पश्चात् शेष रेडियोऐक्टिवता = R
प्रश्नानुसार, R =R0 का 3.125%
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 2

प्रश्न 8:
जीवित कार्बनयुक्त द्रव्य की सामान्य ऐक्टिवता, प्रति ग्राम कार्बन के लिए 15 क्षय प्रति मिनट है। यह ऐक्टिवता, स्थायी समस्थानिक [latex]_{ 6 }^{ 14 }{ C }[/latex] के साथ-साथ अल्प मात्रा में विद्यमान रेडियोऐक्टिव [latex]_{ 6 }^{ 12 }{ C }[/latex] के कारण होती है। जीव की मृत्यु होने पर वायुमण्डल के साथ इसकी अन्योन्य क्रिया (जो उपर्युक्त सन्तुलित ऐक्टिवता को बनाए रखती है) समाप्त हो जाती है तथा इसकी ऐक्टिवता कम होनी शुरू हो जाती है।[latex]_{ 6 }^{ 14 }{ C }[/latex] की ज्ञात अर्धायु (5730 वर्ष) और (UPBoardSolutions.com) नमूने की मापी गई ऐक्टिवता के आधार पर इसकी सन्निकट आयु की गणना की जा सकती है। यही पुरातत्व विज्ञान में प्रयुक्त होने वाली [latex]_{ 6 }^{ 14 }{ C }[/latex] कालनिर्धारण (dating) पद्धति का सिद्धान्त है। यह मानकर कि मोहनजोदड़ो से प्राप्त किसी नमूने की ऐक्टिवता 9 क्षय प्रति मिनट प्रति ग्राम कार्बन है। सिन्धु घाटी सभ्यता की सन्निकट आयु का आकलन कीजिए।
हल:
दिया है, R0 = 15 क्षय प्रति मिनट
R = 9 क्षय प्रति मिनट, T1/2 = 5730 वर्ष
सूत्र R= R0e-λt से, 9 = 15e-λt
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 9:
8.0 mCi सक्रियता का रेडियोऐक्टिव स्रोत प्राप्त करने के लिए [latex]_{ 27 }^{ 60 }{ Co }[/latex]  की कितनी मात्रा की आवश्यकता होगी? [latex]_{ 27 }^{ 60 }{ Co }[/latex]  की अर्धायु 5.3 वर्ष है।
हल:
दिया है, सक्रियता R = 80 mCi= 80 x 10-3 x 3.7 x 1010 विघटन s-1
= 29.6 x 107 विघटन s-1
T1/2 = 5.3 वर्ष (∵ 1 क्यूरी = 3.7 x 1010 विघटन s-1)
= 5.3 x 365 x 24 x 60 x 60s
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 3

प्रश्न 10:
[latex]_{ 38 }^{ 90 }{ Sr }[/latex] की अर्धायु 28 वर्ष है। इस समस्थानिक के 15 mg की विघटन दर क्या है?
हल:
दिया है, पदार्थ का द्रव्यमान = 15 x 10-3
तथा  T1/2 = 28 वर्ष = 28 x 365 x 24 x 60 x 60 s = 88.3 x 107s
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 11:
स्वर्ण के समस्थानिक [latex]_{ 79 }^{ 197 }{ Au }[/latex] एवं रजत के समस्थानिक [latex]_{ 47 }^{ 107 }{ Ag }[/latex] की नाभिकीय त्रिज्या के अनुपात का सन्निकट मान ज्ञात कीजिए।
हल:
किसी नाभिक की त्रिज्या निम्नलिखित सूत्र द्वारा प्राप्त होती है
R =  R0A1/3
जहाँ A = परमाणु द्रव्यमान जबकि R0 = नियतांक
यहाँ [latex]_{ 79 }^{ 197 }{ Au }[/latex] के लिए, A1 = 197
तथा [latex]_{ 47 }^{ 107 }{ Ag }[/latex] के लिए, Ag = 107
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 12:
(a) [latex]_{ 88 }^{ 226 }{ Ra }[/latex] एवं (b) [latex]_{ 86 }^{ 220 }{ Rn }[/latex] नाभिकों के α-क्षय में उत्सर्जित -कणों का Q-मान एवं
गतिज ऊर्जा ज्ञात कीजिए।
दिया है : m ([latex]_{ 88 }^{ 226 }{ Ra }[/latex]) = 226.02540u, m([latex]_{ 86 }^{ 220 }{ Rn }[/latex]) = 222.01750u
m([latex]_{ 86 }^{ 220 }{ Rn }[/latex]) = 220.01137u, m([latex]_{ 84 }^{ 216 }{ Po }[/latex]) = 216.00189u
हल:
(a) [latex]_{ 88 }^{ 226 }{ Ra }[/latex] का z-क्षय निम्न अभिक्रिया के अनुसार होगा
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

UP Board Solutions

प्रश्न 13:
रेडियोन्यूक्लाइड [latex]_{ 6 }^{ 11 }{ C }[/latex]का क्षय निम्नलिखित समीकरण के अनुसार होता है
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 4
उत्सर्जित पॉजिट्रॉन की अधिकतम ऊर्जा 0.960 Mev है। द्रव्यमानों के निम्नलिखित मान दिए गए हैं
m( [latex]_{ 6 }^{ 11 }{ C }[/latex]) = 11.011434u तथा m( [latex]_{ 6 }^{ 11 }{ B }[/latex]) = 11.009305u
Q-मान की गणना कीजिए एवं उत्सर्जित पॉजिट्रॉन की अधिकतम गतिज ऊर्जा के मान से इसकी तुलना कीजिए।
हल:
दिया गया समीकरण
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 5
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei
उत्सर्जित पॉजिट्रॉन की महत्तम गतिज ऊर्जा 0.960 MeV है जो कि Q-मान के तुल्य है।
∵ उत्पाद नाभिक पॉजिट्रॉन की तुलना में अत्यधिक भारी है; अत: इसकी गतिज ऊर्जा लगभग शून्य होगी, पुन: चूंकि पॉजिट्रॉन की अधिकतम गतिज ऊर्जा Q – मान के तुल्य है; अतः न्यूट्रिनो भी लगभग शून्य ऊर्जा के साथ उत्सर्जित होगा।

प्रश्न 14:
[latex]_{ 10 }^{ 23 }{ Ne }[/latex] का नाभिक, β उत्सर्जन के साथ क्षयित होता है। इस β-क्षय के लिए समीकरण लिखिए और उत्सर्जित इलेक्ट्रॉनों की अधिकतम गतिज ऊर्जा ज्ञात कीजिए।
m ([latex]_{ 10 }^{ 23 }{ Ne }[/latex]) = 22.994466 um([latex]_{ 10 }^{ 23 }{ Na }[/latex]) = 22.089770u
हल:
[latex]_{ 10 }^{ 23 }{ Ne }[/latex]  नाभिक के β-क्षय का समीकरण निम्नलिखित है
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei
∵  [latex]_{ 10 }^{ 23 }{ Ne }[/latex]  नाभिक,  [latex]_{ +1 }^{ 0 }{ \beta }[/latex]  तथा ऐन्टिन्यूट्रिनो की तुलना में अत्यधिक भारी है; अत: इसकी गतिज ऊर्जा लगभग शून्य होगी। β-कण की ऊर्जा अधिकतम होगी यदि ऐन्टिन्यूट्रिनो शून्य ऊर्जा के साथ उत्सर्जित हो। इस (UPBoardSolutions.com) दशा में β-कण की ऊर्जा अधिकतम होगी यदि ऐन्टिन्यूट्रिनो शून्य ऊर्जा के साथ उत्सर्जित हो। इस दशा में β-कण की अधिकतम ऊर्जा ९ मान के बराबर अर्थात् 4.37 MeV होगी।

प्रश्न 15:
किसी नाभिकीय अभिक्रिया A+b→ C+d का Q-मान निम्नलिखित समीकरण द्वारा परिभाषित होता है: Q= [mA +mb – mc – md] c2
जहाँ दिए गए द्रव्यमान, नाभिकीय विराम द्रव्यमान (rest mass) हैं। दिए गए आँकड़ों के आधार पर बताइए कि निम्नलिखित अभिक्रियाएँ ऊष्माक्षेपी हैं या ऊष्माशोषी।
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei
हल:
(i) दी गई अभिक्रिया निम्नलिखित है
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei
Q-मान धनात्मक है; अत: यह अभिक्रिया ऊष्माक्षेपी अभिक्रिया है।

प्रश्न 16:
माना कि हम [latex]_{ 26 }^{ 56 }{ Fe }[/latex] नाभिक के दो समान अवयवों [latex]_{ 13 }^{ 28 }{ Al }[/latex] में विखण्डन पर विचार करें।
क्या ऊर्जा की दृष्टि से यह विखण्डन सम्भव है? इस प्रक्रम का Q-मान ज्ञात करके अपना तर्क प्रस्तुत करें।
दिया है : m([latex]_{ 26 }^{ 56 }{ Fe }[/latex]) = 55.93494u एवं m([latex]_{ 13 }^{ 28 }{ Al }[/latex]) = 27.98191u
हल:
[latex]_{ 26 }^{ 56 }{ Fe }[/latex]  → [latex]_{ 13 }^{ 28 }{ Al }[/latex] + [latex]_{ 13 }^{ 28 }{ Al }[/latex]+Q
∴ Q = [m( [latex]_{ 26 }^{ 56 }{ Fe }[/latex]) – 2 x m ([latex]_{ 13 }^{ 28 }{ Al }[/latex])]x 931 MeV
= [55.93494- 2x 27.98191]x 931 MeV
= -26.92 MeV
चूँकि Q का मान ऋणात्मक है अतः विखण्डन सम्भव नहीं है।

प्रश्न 17:
[latex]_{ 94 }^{ 239 }{ Pu }[/latex] के विखण्डन गुण बहुत कुछ [latex]_{ 92 }^{ 235 }{ U }[/latex] से मिलते-जुलते हैं। प्रति विखण्डन विमुक्त औसत ऊर्जा 180 MeV है। यदि 1kg शुद्ध [latex]_{ 94 }^{ 239 }{ Pu }[/latex] के सभी परमाणु विखण्डित हों तो कितनी MeV ऊर्जा विमुक्त होगी?
हल:
यहाँ [latex]_{ 94 }^{ 239 }{ Pu }[/latex]के विखण्डन से मुक्त ऊर्जा = 180 MeV
[latex]_{ 94 }^{ 239 }{ Pu }[/latex] का ग्राम परमाणु द्रव्यमान = 239g
∴ [latex]_{ 94 }^{ 239 }{ Pu }[/latex]प्लूटोनियम में उपस्थित परमाणुओं की संख्या = 6.02 x 1023
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 18:
किसी 1000 MW विखण्डन रिएक्टर के आधे ईधन का 5.00 वर्ष में व्यय हो जाता है। प्रारम्भ में इसमें कितना [latex]_{ 92 }^{ 235 }{ U }[/latex] था? मान लीजिए कि रिएक्टर 80% समय कार्यरत रहता है, इसकी सम्पूर्ण ऊर्जा [latex]_{ 92 }^{ 235 }{ U }[/latex]  के विखण्डन से ही उत्पन्न हुई है; तथा [latex]_{ 92 }^{ 235 }{ U }[/latex] एन्यूक्लाइड केवल विखण्डन प्रक्रिया में ही व्यय होता है।
हल:
रिएक्टर की शक्ति P= 1000 MW = 1000 x 106 Js-1= 109 Js-1
समय t = 5.0 वर्ष = 5 x 365 x 24 x 60 x 60s
= 1.577 x 108 s
∴ 5 वर्ष में रिएक्टर में उत्पन्न ऊर्जा (जबकि यह 80% समय ही कार्य करता है)
E = 80% t x P
= [latex]\frac { 80 }{ 100 }[/latex] x 1.577 x 108 x 169
: = 1.2616 x 1017J
∵ [latex]^{ 235 }{ U }[/latex] के एक परमाणु के विखण्डन से औसतन 200 MeV ऊर्जा उत्पन्न होती है।
∴ 100 MeV ऊर्जा उत्पन्न होती है = 1 परमाणु से
या 200 x 1.6 x 10-13J ऊर्जा उत्पन्न होती है = 1 परमाणु से
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 6
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 19:
2.0 kg ड्यूटीरियम के संलयन से एक 100 वाट का विद्युत लैम्प कितनी देर प्रकाशित रखा जा सकता है? संलयन अभिक्रिया निम्नवत् ली जा सकती है।
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 7
हल:
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 20:
दो ड्यूट्रॉनों के आमने-सामने की टक्कर के लिए कूलॉम अवरोध की ऊँचाई ज्ञात कीजिए। (संकेत-कूलॉम अवरोध की ऊँचाई का मान इन ड्यूट्रॉन के बीच लगने वाले उस कूलॉम प्रतिकर्षण बल के बराबर होता है जो एक-दूसरे को सम्पर्क में रखे जाने पर उनके बीच आरोपित होता है। (UPBoardSolutions.com) यह मान सकते हैं कि ड्यूट्रॉन 2.0 fm प्रभावी त्रिज्या वाले दृढ़ गोले हैं।)
हल:
प्रत्येक ड्यूट्रॉन पर आवेश
q1 = q2 = +1.6 x 10-19C
ऊर्जा के पदों में कुलॉम अवरोध (विभव प्राचीर)
माना प्रारम्भ में प्रत्येक ड्यूट्रॉन की गतिज ऊर्जा K है। जब ये दोनों एक-दूसरे के सम्पर्क में आते हैं तो सम्पूर्ण ऊर्जा विद्युत स्थितिज ऊर्जा में बदल जाती है। ∴ ऊर्जा संरक्षण से,
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 21:
समीकरण R= R0A1/3 के आधार पर, दर्शाइए कि नाभिकीय द्रव्य को घनत्व लगभग अचर है (अर्थात् A पर निर्भर नहीं करता है)। यहाँ R0 एक नियतांक है एवं A नाभिक की द्रव्यमान संख्या है।
हल:
∵  नाभिक की द्रव्यमान संख्या = A
∴ नाभिक का द्रव्यमान m = Au
= A x 1.66 x 10-27kg
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei
∵ यह घनत्व नाभिक की द्रव्यमान संख्या A से मुक्त है; अत: हम कह सकते हैं कि नाभिकीय द्रव्य का , घनत्व लगभग अचर है।।

UP Board Solutions

प्रश्न 22:
किसी नाभिक से β+ (पॉजिट्रॉन) उत्सर्जन की एक अन्य प्रतियोगी प्रक्रिया है जिसे इलेक्ट्रॉन परिग्रहण (Capture) कहते हैं (इसमें परमाणु की आन्तरिक कक्षा, जैसे कि K-कक्षा, से नाभिक एक इलेक्ट्रॉन परिगृहीत कर लेता है और एक न्यूट्रिनो, ν उत्सर्जित करता है)।
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 8
दर्शाइए कि यदि β+ उत्सर्जन ऊर्जा विचार से अनुमत है तो इलेक्ट्रॉन परिग्रहण भी आवश्यक रूप से अनुमत है, परन्तु इसका विलोम अनुमत नहीं है।
हल:
पॉजिट्टॉन उत्सर्जन की अभिक्रिया का समीकरण निम्नलिखित है
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei
समीकरण (3) व (4) से स्पष्ट है। यदि पॉजिट्रॉन उत्सर्जन [अभिक्रिया (1)] ऊर्जा दृष्टि से अनुमत है तो इस अभिक्रिया का Q-मान अर्थात्
Q1 धनात्मक होगी।
अर्थात्   Q1 > 0
Q2 > Q1  अतः Q1 > 0 ⇒ Q1  > 0
अर्थात् तब अभिक्रिया (2) का -मान भी धनात्मक होगा अर्थात् ऊर्जा दृष्टि से इलेक्ट्रॉन परिग्रहण भी अनुमत है।
अब इस अभिक्रिया के विलोम पर विचार कीजिए,
स्पष्ट है कि इस अभिक्रिया का Q-मान – Q2 के बराबर होगा।
∴ Q2> 0; अतः Q3 =-Q2 < 0
∵  इस अभिक्रिया का 2-मान ऋणात्मक है; अतः यह अभिक्रिया ऊर्जा दृष्टि से अनुमत नहीं है।

अतिरिक्त अभ्यास

प्रश्न 23:
आवर्त सारणी में मैग्नीशियम का औसत परमाणु द्रव्यमान 24.312u दिया गया है। यह औसत मान, पृथ्वी पर इसके समस्थानिकों की सापेक्ष बहुलता के आधार पर दिया गया है। मैग्नीशियम के तीनों समस्थानिक तथा उनके द्रव्यमान इस प्रकार हैं
[latex]_{ 12 }^{ 24 }{ Mg }[/latex](28.98504u), [latex]_{ 12 }^{ 25 }{ Mg }[/latex](24.98584) एवं [latex]_{ 12 }^{ 26 }{ Mg }[/latex](25.98259u)। प्रकृति में प्राप्त मैग्नीशियम में [latex]_{ 12 }^{ 24 }{ Mg }[/latex] की (द्रव्यमान के अनुसार) बहुलता 78.99% है। अन्य दोनों समस्थानिकों की बहुलता का परिकलन कीजिए।
हल:
दिया है, मैग्नीशियम का औसत परमाणु द्रव्यमान = 24.312u
[latex]_{ 12 }^{ 24 }{ Mg }[/latex] समस्थानिक की बहुलता = 78.99%
माना समस्थानिक [latex]_{ 12 }^{ 25 }{ Mg }[/latex] की बहुलता a% है।
[latex]_{ 12 }^{ 26 }{ Mg }[/latex] समस्थानिक की बहुलता = 100 – 78.99- a
= (21.01 – a) %
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 24:
न्यूट्रॉन पृथक्करण ऊर्जा (Separation energy), परिभाषा के अनुसार वह ऊर्जा है, जो किसी नाभिक से एक न्यूट्रॉन को निकालने के लिए आवश्यक होती है। नीचे दिए गए  आँकड़ों का इस्तेमाल करके [latex]_{ 20 }^{ 41 }{ Ca }[/latex]एवं [latex]_{ 13 }^{ 27 }{ Al }[/latex] नाभिकों की न्यूट्रॉन पृथक्करण ऊर्जा ज्ञात कीजिए।
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 9
हल:
[latex]_{ 20 }^{ 41 }{ Ca }[/latex]  की न्यूट्रॉन पृथक्करण ऊर्जा
न्यूट्रॉन पृथक्करण अभिक्रिया का समीकरण निम्नलिखित है
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 10
∴ Qका मान ऋणात्मक है अर्थात् उक्त अभिक्रिया ऊष्माशोषी है।
∴ न्यूट्रॉन पृथक्करण ऊर्जा 8.36 MeV है।

(ii) [latex]_{ 13 }^{ 27 }{ A }[/latex]  की न्यूट्रॉन पृथक्करण ऊर्जा
[latex]_{ 13 }^{ 27 }{ A }[/latex] की न्यूट्रॉन पृथक्करण समीकरण निम्नलिखित है
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 11
∴ Q का मान ऋणात्मक है; अत: उक्त अभिक्रिया ऊष्माशोषी है।
∴ [latex]_{ 13 }^{ 27 }{ A }[/latex] की न्यूट्रॉन पृथक्करण ऊर्जा 13.06 MeV है।

प्रश्न 25:
किसी स्रोत में फॉस्फोरस के दो रेडियो न्यूक्लाइड निहित हैं [latex]_{ 15 }^{ 32 }{ P }[/latex](T1/2 = 14.3d) एवं [latex]_{ 15 }^{ 33 }{ P }[/latex](1/2 = 25.3d)। प्रारम्भ में [latex]_{ 15 }^{ 33 }{ P }[/latex] से 10% क्षय प्राप्त होता है। इससे 90% क्षय प्राप्त करने के लिए कितने समय प्रतीक्षा करनी होगी?
हल:
माना प्रारम्भ में [latex]_{ 15 }^{ 33 }{ P }[/latex] तथा [latex]_{ 15 }^{ 32 }{ P }[/latex] को रेडियोऐक्टिवताएँ R01 व R02 हैं तथा । समय पश्चात् इनकी रेडियोऐक्टिवताएँ Rव R2 हैं।
तब प्रारम्भ में, पदार्थ की कुल सक्रियता = R01 + R02

UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 12

UP Board Solutions

प्रश्न 26:
कुछ विशिष्ट परिस्थितियों में एक नाभिक, α -कण से अधिक द्रव्यमान वाला एक कण उत्सर्जित करके क्षयित होता है। निम्नलिखित क्षय-प्रक्रियाओं पर विचार कीजिए
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 13
इन दोनों क्षय प्रक्रियाओं के लिएQ-मान की गणना कीजिए और दर्शाइए कि दोनों प्रक्रियाएँ ऊर्जा की दृष्टि से सम्भव हैं।
हल:
दी गई समीकरण निम्नलिखित है
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 27:
तीव्र न्यूट्रॉनों द्वारा [latex]_{ 92 }^{ 238 }{ U }[/latex] के विखण्डन पर विचार कीजिए। किसी विखण्डन प्रक्रिया में प्राथमिक अंशों (Primary fragments) के बीटा-क्षय के पश्चात कोई न्यूट्रॉन उत्सर्जित नहीं होता तथा [latex]_{ 58 }^{ 140 }{ P }[/latex] तथा [latex]_{ 34 }^{ 99 }{ Ru }[/latex] अन्तिम उत्पाद प्राप्त होते हैं। विखण्डन प्रक्रिया के लिए के मान का परिकलन कीजिए। आवश्यक आँकड़े इस प्रकार हैं
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 14
हल:
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 28:
D.T अभिक्रिया (ड्यूटीरियम-ट्राइटियम संलयन), [latex]_{ 1 }^{ 2 }{ H }[/latex]+ [latex]_{ 1 }^{ 3 }{ H }[/latex] → [latex]_{ 2 }^{ 4 }{ He }[/latex] + n पर विचार कीजिए।
(a) नीचे दिए गए आँकड़ों के आधार पर अभिक्रिया में विमुक्त ऊर्जा का मान Mev में ज्ञात कीजिए।
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 15
(b) इयूटीरियम एवं ट्राइटियम दोनों की त्रिज्या लगभग 1.5 fm मान लीजिए। इस अभिक्रिया में, दोनों नाभिकों के मध्य कूलॉम प्रतिकर्षण से पार पाने के लिए कितनी गतिज ऊर्जा की आवश्यकता है? अभिक्रिया प्रारम्भ करने के लिए गैसों (0 तथा 1 गैसें) को किस ताप तक ऊष्मित कि(UPBoardSolutions.com) या जाना चाहिए?
(संकेत : किसी संलयन क्रिया के लिए आवश्यक गतिज ऊर्जा = संलयन क्रिया में संलग्न कणों की औसत तापीय गतिज ऊर्जा = 2 (3KT/2); K:  बोल्ट्ज़मान नियतांक तथा T = परम ताप)
हल:
(a) दी गई अभिक्रिया का समीकरण निम्नलिखित है
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 16

प्रश्न 29:
नीचे दी गई क्षय-योजना में, γ-क्षयों की विकिरण आवृत्तियाँ एवं β-कणों की अधिकतम गतिज ऊर्जाएँ ज्ञात कीजिए। दिया है:
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei
हल:
चित्र से, E1 = [latex]_{ 80 }^{ 198 }{ Hg }[/latex] की निम्नतम ऊर्जा स्तर में ऊर्जा = 0 MeV
E2 = [latex]_{ 80 }^{ 198 }{ Hg }[/latex] की प्रथम उत्तेजित अवस्था में ऊर्जा = 0.412 MeV
E3 = [latex]_{ 80 }^{ 198 }{ Hg }[/latex] की द्वितीय उत्तेजित अवस्था में ऊर्जा = 1.088 MeV
माना उत्सर्जित γ फोटॉनों (γ12 व γ3) की आवृत्तियाँ क्रमशः ν12 व ν3 हैं।
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei
जबकि इन फोटॉनों की ऊर्जाएँ निम्नलिखित हैं
E (γ1) = E3 – E1 = 1.088 MeV
E (γ2)= E2– E1 = 0.412 Mev
E (γ3) = E3 – E2 = 1.088- 0.412 = 0.676 MeV
[latex]_{ 79 }^{ 198 }{ Au }[/latex] के β1-क्षय में Au नाभिक पहले एक β कण उत्सर्जित करता है तत्पश्चात् γ1-फोटॉन को । उत्सर्जित करके  [latex]_{ 80 }^{ 198 }{ Hg }[/latex] नाभिक में बदल जाता है; अतः
[latex]_{ 79 }^{ 198 }{ Au }[/latex] के β1-क्षय का समीकरण निम्नलिखित है
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 17
यहाँ E(β1) तथा E (γ1) इन कणों की ऊर्जाएँ हैं। स्पष्ट है कि E(β1) का मान अधिकतम होगा यदि [latex]_{ 80 }^{ 198 }{ Hg }[/latex] की गतिज ऊर्जा शून्य हो। अर्थात् अभिक्रिया की सम्पूर्ण ऊर्जा केवल β-कण तथा γ-कोटॉन की ऊर्जा के रूप में निकलें।।
∴  β -कण की महत्तम गतिज ऊर्जा
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei
[latex]_{ 79 }^{ 198 }{ Au }[/latex] के β2क्षय में Au नांभिक पहले β-कण उत्सर्जित करता है तत्पश्चात् γ2 फोटॉन उत्सर्जित करता हुआ [latex]_{ 80 }^{ 198 }{ Hg }[/latex]नाभिक में बदल जाता है।
इसे क्षय का समक्रण निम्नलिखित है
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 30:
सूर्य के अभ्यंतर में (a) 1kg हाइड्रोजन के संलयन के समय विमुक्त ऊर्जा का परिकलन कीजिए। (b) विखण्डन रिएक्टर में 1.0 kg [latex]^{ 235 }{ U }[/latex] के विखण्डन में विमुक्त ऊर्जा का परिकलेन कीजिए। (c) प्रश्न के खण्ड (a) तथा (b) में विमुक्त ऊर्जाओं की तुलना
कीजिए।
हल:
(a) सूर्य के अभ्यन्तर में हाइड्रोजन के 4 परमाणु निम्नलिखित अभिक्रिया के अनुसार संलयित होकर हीलियम परमाणु का निर्माण करते हैं तथा लगभग 26 Mev ऊर्जा उत्पन्न होती है।
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 18
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न31:
मान लीजिए कि भारत का लक्ष्य 2020 तक200,000 MW विद्युत शक्ति जनन का है। इसका 10% नाभिकीय शक्ति संयंत्रों से प्राप्त होना है। माना कि रिएक्टर की औसत उपयोग दक्षता (ऊष्मा को विद्युत में परिवर्तित करने की क्षमता) 25% है। 2028 के अन्त तक हमारे देश को प्रति वर्ष कितने विखण्डनीय यूरेनियम की आवश्यकता होगी। [latex]^{ 235 }{ U }[/latex] प्रति विखण्डन उत्सर्जित ऊर्जा 200 MeV है।
हल:
कुल ऊर्जा लक्ष्य = 200,000 MW
∴  नाभिकीय संयंत्रों से प्राप्त शक्ति = 10% x 200,000 MW
= [latex]\frac { 10 }{ 100 }[/latex] x 200,000 x 106w
= 2 x 1010w
∴ प्रतिवर्ष नाभिकीय संयंत्रों से प्राप्त ऊर्जा = 2 x 1010Js-1x 1 x 365 x 24 x 60 x 60s
= 6.31 x 1017 J
माना संयंत्रों में विखण्डन हेतु x kg [latex]^{ 235 }{ U }[/latex] की प्रतिवर्ष आवश्यकता होती है।
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 19

परीक्षोपयोगी प्रश्नोत्तर

बहुविकल्पीय प्रश्न

प्रश्न 1:
1 amu के तुल्य ऊर्जा है (2009, 16, 17) 
(i) 190 MeV
(ii) 139 MeV
(iii) 913 MeV
(iv) 931 MeV
उत्तर:
(iv) 931 MeV

UP Board Solutions

प्रश्न 2:
हीलियम के नाभिक के लिए द्रव्यमान क्षति 0.0303 amu है। इसके लिए Mev में प्रति न्यूक्लिऑन बन्धन ऊर्जा लगभग होगी (2011)
(i) 28
(ii) 7
(ii) 4
(iv) 1
उत्तर:
(i) 28

प्रश्न 3:
हाइड्रोजन नाभिक की बन्धन ऊर्जा है (2017)
(i) -13.6 eV
(ii) 0
(iii) 13.6 eV
(iv) 6.8 eV
उत्तर:
(ii) 0

प्रश्न 4.
न्यूक्लियर बल की प्रकृति है (2011)
(i) विद्युतीय
(ii) चुम्बकीय :
(iii) गुरुत्वीय
(iv) इनमें से कोई नहीं
उत्तर:
(iv) इनमें से कोई नहीं

प्रश्न 5. निम्न में से समन्यूट्रॉनिक युग्म होंगे (2012)
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 20
उत्तर:
(i) 6c14 तथा 8016

प्रश्न 6:
दो परमाणुओं के परमाणु क्रमांक समान परन्तु परमाणु द्रव्यमान भिन्न हैं। वे होंगे (2011, 14)
(i) समस्थानिक
(ii) समभारिक
(iii) समन्यूट्रॉनिक
(iv) इनमें से कोई नहीं
उत्तर:
(i) समस्थानिक

प्रश्न 7:
वे नाभिक जिनके लिए A तथा zभिन्न परन्तु (A-Z) समान होता है, कहलाते हैं
(i) समस्थानिक
(ii) समप्रोटॉनिक
(iii) समन्यूट्रॉनिक
(iv) समभारिक
उतर:
(iii) समन्यूट्रॉनिक

UP Board Solutions

प्रश्न 8:
दी गई नाभिकीय अभिक्रिया में X प्रदर्शित करता है (2017)
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 21
(i) इलेक्ट्रॉन
(ii) न्यूट्रॉन
(iii) न्यूट्रीनो
(iv) प्रोटॉन
उत्तर:
(iii) न्यूट्रीनो

प्रश्न 9:
किसी नाभिक से-किरणें उत्सर्जित होने पर परिवर्तित होती है (2017)
(i) प्रोटॉन संख्या
(ii) न्यूट्रॉन संख्या
(iii) प्रोटॉन व न्यूट्रॉन दोनों की संख्या
(iv) न प्रोटॉन और न ही न्यूट्रॉन की संख्या
उत्तर:
(iv) न प्रोटॉन और न ही न्यूट्रॉन की संख्या

प्रश्न 10:
………… के क्षय के कारण तत्व परिवर्तित नहीं होता है। (2017)
(i) γ -किरण
(ii) β -किरण
(iii) β+ किरण
(iv) α -किरण
उत्तर:
(i) किरण

प्रश्न 11:
कण जो 92U228 के नाभिक में नहीं उपस्थित हैं (2017)
(i) 92 प्रोटॉन
(ii) 92 इलेक्ट्रॉन
(iii) 146 न्यूट्रॉन
(iv) 238 न्यूक्लिऑन
उतर:
(ii) 92 इलेक्ट्रॉन

UP Board Solutions

प्रश्न 12:
यदि 5 वर्ष अर्द्ध-आयु के पदार्थ का प्रारम्भिक द्रव्यमान N0 है तो 15 वर्ष बाद पदार्थ का अन्तिम द्रव्यमान है (2014)
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 22
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 23

प्रश्न 13:
एक रेडियोऐक्टिव पदार्थ अपनी औसत आयु के बराबर समयान्तराल के लिए विघटित होता है। इसका कितना अंश विघटित होगा? (2012)
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 24
उतर:
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 25

प्रश्न 14:
एक रेडियोऐक्टिव नाभिक 81X237  तीन α-कण तथा एक β-कण उत्सर्जित करता है। प्राप्त नाभिक है (2013)
(i) 76Y225
(ii) 78Y225
(ii) 80Y229
(iv) 82Y230
उत्तर:
(i) 76Y225

प्रश्न 15:
रेडियोऐक्टिव पदार्थ उत्सर्जित नहीं करते हैं (2013)
(i) इलेक्ट्रॉन
(ii) प्रोटॉन
(iii) γ -किरणें
(iv) हीलियम नाभिक
उत्तर:
(ii) प्रोटॉन

प्रश्न 16:
Bi20 की अर्द्ध-आयु 5 दिन है। इसके किसी नमूने के 8 भागों में से 7 भागों के क्षय होने में समय लगता है
(i) 3.4 दिन
(ii) 10 दिन
(iii) 15 दिन
(iv) 20 दिन
उत्तर:
(iii) 15 दिन

UP Board Solutions

प्रश्न 17:
रेडियोऐक्टिव विघटन में 9a0238 का नाभिक giPa234 में बदल जाता है। इस विघटन के दौरान उत्सर्जित कण है (2010)
(i) एक प्रोटॉन एवं एक न्यूट्रॉन
(ii) एक ऐल्फा कण एवं एक बीटा कण
(iii) दो बीटा कण एवं एक न्यूट्रॉन
(iv) दो बीटा कण एवं एक प्रोटॉन
उत्तर:
(ii) एक ऐल्फा कण एवं एक बीटा कण

प्रश्न 18:
प्रकाश तरंगों की प्रकृति समान होती है (2010)
(i) कैथोड किरणों के
(ii) β-किरणों के
(iii) γ-किरणों के
(iv) α-किरणों के
उत्तर:
(iii) γ-किरणों के

प्रश्न 19:
किसी रेडियोऐक्टिव पदार्थ के निश्चित द्रव्यमान में 20 घण्टे में 75% की कमी हो जाती है। उसकी अर्द्ध-आयु होगी  (2011)
(i) 5 घण्टे
(ii) 10 घण्टे
(iii) 15 घण्टे
(iv) 20 घण्टे
उत्तर:
(ii) 10 घण्टे

प्रश्न 20:
रेडियम की अर्द्ध-आयु 1600 वर्ष है। वह समय जब 100 ग्राम रेडियम से 25 ग्राम, रेडियम अविघटित रह जाता है, है (2010)
(i) 2400 वर्ष
(ii) 3200 वर्ष
(iii) 4800 वर्ष
(iv) 6400 वर्ष
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 21:
एक रेडियोऐक्टिव पदार्थ का क्षय नियतांक 3,465  x 10-4 प्रति वर्ष है। इसकी लगभग अर्द्ध-आयु है (2015)
(i) 2000 वर्ष
(ii) 2400 वर्ष
(iii) 2600 वर्ष
(iv) 6300 वर्ष
उत्तर:
(i) 2000 वर्ष

UP Board Solutions

प्रश्न 22:
सूर्य की विकिरण ऊर्जा का स्रोत है (2015)
(i) नाभिकीय विखण्डन
(iii) प्रकाश-वैद्युत प्रभाव
(ii) साइक्लोट्रॉन
(iv) नाभिकीय संलयन
उत्तर:
(iv) नाभिकीय संलयन

अतिलघु उत्तरीय प्रश्न

प्रश्न 1:
हाइड्रोजन के तीनों आइसोटोपों (समस्थानिकों) के नाम व सूत्र लिखिए। (2011)
उत्तर:
हाइड्रोजन (1H1), ड्यूटीरियम (1H2), ट्राइटीयम (1H3)

प्रश्न 2:
उन परमाणुओं को, जिनके नाभिकों में प्रोटॉनों की संख्या समान हो परन्तु न्यूट्रॉनों की संख्या भिन्न हो, को क्या नाम दिया गया है ? (2011)
उत्तर:
समस्थानिक अथवा समप्रोटॉनिक।

प्रश्न 3:
समन्यूट्रॉनिक से आप क्या समझते हैं? उदाहरण दीजिए। (2017)
उत्तर:
ऐसे नाभिक जिनमें केवल न्यूट्रॉनों की संख्या समान होती है, समन्यूट्रॉनिक कहलाते
उदाहरणार्थ  1H3, 2He4, 3Li74Be8

प्रश्न 4:
नाभिकीय क्रिया की उस समीकरण को लिखिए जिसका सम्बन्ध प्रोटॉन की खोज से है। या प्रोटॉन की खोज सम्बन्धी समीकरण लिखिए। (2013)
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 26

प्रश्न 5:
लीथियम नाभिक का प्रतीक 3Li7 है। इसके नाभिक में कितने प्रोटॉन तथा कितने न्यूट्रॉन हैं ?(2011)
हल:
प्रोटॉनों की संख्या = Z = 3
न्यूट्रॉनों की संख्या = A – Z = 7 – 3= 4

प्रश्न 6:
निम्नलिखित नाभिकीय क्रिया को पूरा कीजिए (2013)
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 27
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 28

प्रश्न 7:
7N14 पर -कण की बमबारी करने पर 8O17 बनता है। कौन-सा कण उत्सर्जित होता है? अभिक्रिया लिखकर बताइए। (2013)
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 8:
निम्नलिखित नाभिकीय क्रियाओं को पूरा कीजिए
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 29
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 30
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 9:
यदि प्रकाश की चाल वर्तमान चाल की दोगुनी हो जाए, तो नाभिक की बन्धन ऊर्जा कितनी हो जाएगी? (2012)
उत्तर:
नाभिक की बन्धुन ऊर्जा = द्रव्यमान क्षति x c²
अतः बन्धन ऊर्जा चार गुनी हो जायेगी।

प्रश्न 10:
जब तीन α -कण जुड़कर कार्बन नाभिक 6C12  बनाते हैं तो उत्पन्न ऊर्जा की गणना कीजिए। 2Heको परमाणु द्रव्यमान 4.002803 amu है।
(2014)
हल:
कार्बन नाभिक 6C12  का द्रव्यमान = 12u
अभिक्रिया 3 ( 2He)- 6C12  में निर्गत् ऊर्जा
= [3m (2He4)- m (6C12)] c2
= [3 x 4.002603u – 12u] (931 MeV/4)
= 7.27 MeV/u

प्रश्न 11:
1 मिलीग्राम द्रव्यमान क्षति से कितने जूल ऊर्जा मुक्त होगी? (2013, 15)
हल:
Δm = 1 मिलीग्राम = 1 x 10-6 kg
मुक्त ऊर्जा = Δm x c2= 1 x 10-6 x (3 x 108)2
= 9 x 1010 जूल।

प्रश्न 12:
1.0 किग्रा हाइड्रोजन के हीलियम में परिवर्तन से उत्पन्न ऊर्जा का मान किलोवाट घण्टा में प्राप्त कीजिए। इस प्रक्रिया में द्रव्यमान क्षति 0.4है। (2012)
हल:
m = 1.0 किग्रा ।
द्रव्यमान क्षति Δm= 1 किग्रा का 0.4% = 0.004 किग्रा
उत्पन्न उर्जा ΔE = (Δm) c² = 0.004 x (3 x 108)2
= 0.036 x 1016 = 3.6 x 1014 जूल
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 31

प्रश्न 13:
हीलियम (2He4) नाभिक की प्रति न्यूक्लीऑन बन्धन ऊर्जा 7.0756 Mev है। नाभिक के लिए द्रव्यमान क्षति की गणना कीजिए। (2012)
हल:
नाभिक की कुल बन्धन ऊर्जा = प्रति न्यूक्लीऑन बन्धन ऊर्जा x द्रव्यमान संख्या
= 7.0756 x 4 = 28.3024 MeV
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 14:
यदि प्रकाश की चाल 108 मी/से हो जाए, तो किसी नाभिक की बन्धन ऊर्जा पर क्या प्रभाव पड़ेगा? (2013)
हल:
नाभिक की बन्धन ऊर्जा = द्रव्यमान क्षति x c2
= Δm x (3 x 108)2 मी/से
= 9 x 1016Am जूल   [∵ c = 3×108 मी/से]
जब c = 10मी/से
तब बन्धन ऊर्जा = Δm x (108) जूल = Δm x 1016 जूल
अर्थात नाभिक की बन्धन ऊर्जा [latex]\frac { 1 }{ 9 }[/latex] हो जायेगी।

UP Board Solutions

प्रश्न 15:
हीलियम नाभिक की द्रव्यमान क्षति 0.0303 amu है। प्रति न्यूक्लिऑन बन्धन ऊर्जा की गणना कीजिए। (2014)
हल:
हीलियम नाभिक की बन्धन ऊर्जा = 0.0303×931 = 28.20 MeV
प्रति न्यूक्लिऑन बन्धन ऊर्जा = [latex]\frac { 28.20 }{ 4 }[/latex]  = 7.05 MeV

प्रश्न 16:
क्यूरी की परिभाषा दीजिए।
या
क्यूरी किस भौतिक राशि का मात्रक है? क्यूरी का मान कितना है? (2013)
उत्तर:
क्यूरी (Curie): यह रेडियोऐक्टिव पदार्थ की सक्रियता का मात्रक है। इसको इस प्रकार परिभाषित किया जाता है
“यदि किसी रेडियोऐक्टिव पदार्थ में 3.7 x 1010 विघटन प्रति सेकण्ड होते हैं, तो उस पदार्थ की सक्रियता 1 क्यूरी होगी।”
अर्थात् 1 क्यूरी = 3.7 x 1010

प्रश्न 17:
किसी रेडियोऐक्टिव पदार्थ की अर्द्ध-आयु से क्या तात्पर्य है? (2012, 15)
उत्तर:
अर्द्ध-आयु-वह समय अन्तराल जिसके अन्तर्गत किसी रेडियोऐक्टिव पदार्थ की मात्रा अर्थात् उसके परमाणुओं (नाभिकों) की संख्या रेडियोऐक्टिव क्षय के फलस्वरूप घटकर अपने प्रारम्भिक मान की आधी रह जाती है, उस रेडियोऐक्टिव पदार्थ की अर्द्ध-आयु कहलाता है। इसको T से प्रदर्शित करते हैं।

प्रश्न 18:
किसी रेडियोऐक्टिव पदार्थ के क्षय नियतांक की परिभाषा लिखिए। (2012)
उत्तर:
किसी क्षण रेडियोऐक्टिव पदार्थ के परमाणुओं के क्षय होने की दर [  ([latex]\frac { dN }{ dt }[/latex] ) ]  तथा उस क्षण पदार्थ में विद्यमान परमाणुओं की संख्या (N) के अनुपात को उस रेडियोऐक्टिव पदार्थ का क्षय नियतांक (λ) कहते हैं।

UP Board Solutions

प्रश्न 19:
रेडियोऐक्टिव क्षय का नियम क्या है? (2014, 17)
उत्तर:
किसी रेडियोऐक्टिव पदार्थ के परमाणुओं से α- अथवा β- कण तथा γ-किरणें निकलती रहती हैं। इससे परमाणु का भार तथा क्रमांक बदल जाते हैं। इस प्रकार (UPBoardSolutions.com) प्रारम्भिक रेडियोऐक्टिव परमाणु का क्षय हो जाता है तथा किसी नये तत्त्व के परमाणु का जन्म हो जाता है। इस घटना को रेडियोऐक्टिव क्षय कहते हैं।

प्रश्न 20:
एक रेडियोऐक्टिव परमाणु ZXA पहले β-कण उत्सर्जित करता है तत्पश्चात् एक γ-फोटॉन उत्सर्जित करता है। प्राप्त नये परमाणु का परमाणु क्रमांक एवं परमाणु द्रव्यमान लिखिए। (2017)
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 32

प्रश्न 21:
8Po210  एक ऐल्फा-कण उत्सर्जित करके सीसे (Pb) में बदल जाता है। इस रेडियोऐक्टिव क्षय की समीकरण दीजिए।
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 33

प्रश्न 22:
(i) एक रेडियोऐक्टिव तत्त्व की अर्द्ध-आयु 3 घण्टे है। 9 घण्टे पश्चात इसकी सक्रियता की गणना कीजिए।
(ii) चार अर्द्ध-आयुओं के बाद किसी रेडियोऐक्टिव तत्त्व की सक्रियता, प्रारम्भिक सक्रियता के पदों में क्या होगी? (2012)
या
4 अर्द्ध-आयुओं के पश्चात् किसी रेडियोऐक्टिव पदार्थ की कितनी मात्रा अवशेष रह जायेगी ? (2013)
हल:
(i) T = 3 घण्टा तथा t = 9 घण्टा,
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 23:
किसी रेडियोऐक्टिव पदार्थ का क्षय नियतांक 0.001 प्रतिवर्ष है। इसकी औसत आयु ज्ञात कीजिए। (2011, 15)
हल:
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 34

प्रश्न 24:
एक रेडियोऐक्टिव पदार्थ की अर्द्ध-आयु 693 वर्ष है। इसका क्षयांक ज्ञात कीजिए।  (2010, 14, 17)
हल:
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 35

प्रश्न 25:
रेडियम की अर्द्ध-आयु 1600 वर्ष है। कितने समय पश्चात् रेडियम के किसी खण्ड का 25% अविघटित रह जाएगा? (2015)
हल:
अर्द्ध-आयु 1 = 1600 वर्ष
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 26:
5 अर्द्ध-आयुओं के उपरान्त किसी रेडियोऐक्टिव तत्त्व की मात्रा का कितना प्रतिशत अविघटित रहेगा? (2012)
हल:
माना रेडियोऐक्टिव तत्त्व की प्रारम्भिक मात्रा N0 है। तब, n अर्द्ध-आयुओं के पश्चात् बचे पदार्थ की मात्रा
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 27:
एक रेडियोऐक्टिव तत्त्व की अर्द्ध-आयु 8 वर्ष है। कितने समय बाद पदार्थ विघटित होकर प्रारम्भिक मात्रा का एक चौथाई रह जायेगा? (2016)
हल:
अर्द्ध-आयु, T = 8 वर्ष
प्रारम्भिक मात्रा = N0
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 36

UP Board Solutions

प्रश्न 28:
किसी रेडियोऐक्टिव पदार्थ की अर्द्ध-आयु 16 घण्टे है। कितने समय बाद प्रारम्भिक द्रव्यमान का 25% भाग अविघटित रह जाएगा? (2017)
हल:
अर्द्ध-आयु, 7 = 16 घण्टे
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 29:
β-किरणों के दो मुख्य गुण लिखिए। (2012)
उत्तर:
β-किरणों या β-कणों के दो मुख्य गुण इस प्रकार हैं
(i) आवेशित होने के कारण ये कण चुम्बकीय-क्षेत्र में विक्षेपित हो जाते हैं। विक्षेप की दिशा से पता चलता है कि ये ऋणावेशित कण हैं। α-कणों की (UPBoardSolutions.com) अपेक्षा इनका विक्षेप बहुत अधिक होता है इससे पता चलता है कि β-कण, α-कण की अपेक्षा बहुत हल्के होते हैं।
(ii) रेडियोऐक्टिव पदार्थों से β-कण अत्यधिक उच्च वेग से उत्सर्जित होते हैं। इनका वेग प्रकाश की चाल के 1% से लेकर 99% तक होता है।

प्रश्न 30:
किसी नाभिक से एक β-कण निकलने पर उसके परमाणु क्रमांक तथा द्रव्यमान संख्या में क्या परिवर्तन होता है ? (2011)
उत्तर:
परमाणु क्रमांक में 1 की वृद्धि होती है तथा द्रव्यमान संख्या में कोई परिवर्तन नहीं होता है।

प्रश्न 31:
नाभिकीय श्रृंखला क्रिया में क्रान्तिक द्रव्यमान से क्या अभिप्राय है? (2009, 17)
उत्तर:
नाभिकीय विखण्डन की श्रृंखला-अभिक्रिया चालू रखने के लिए विखण्डनीय पदार्थ का द्रव्यमान सदैव एक निश्चित द्रव्यमान से अधिक होना चाहिए। इस निश्चित द्रव्यमान को ही क्रान्तिक द्रव्यमान कहते है।

UP Board Solutions

प्रश्न 32:
एक परमाणु द्रव्यमान मात्रक (1 amu) की तुल्य ऊर्जा मिलियन इलेक्ट्रॉन वोल्ट (MeV) में बताइए। (2013)
या
आइन्स्टीन के समीकरण से amu की तुल्य ऊर्जा MeV में कितनी होती है?
उत्तर:
1 amu= 931 MeV

प्रश्न 33:
नाभिकीय रिएक्टर में मन्दक की आवश्यकता क्यों होती है?
या
नाभिकीय रिएक्टर में मन्दंक का क्या उपयोग है? (2009)
उत्तर:
न्यूट्रॉन की गति मन्द करने के लिए मन्दक का उपयोग किया जाता है।

प्रश्न 34:
भारी जल का प्रयोग मुख्यतः कहाँ और किसलिए किया जाता है? (2017)
उत्तर:
नाभिकीय रिएक्टर में न्यूट्रॉनों की गति मन्द करने के लिए।

प्रश्न 35:
नाभिकीय रिएक्टर में कैडमियम छड़ों का क्या उपयोग है?
उतर:
विखण्डन क्रिया को नियन्त्रित करने के लिए इनका प्रयोग किया जाता है।

प्रश्न 36:
नाभिकीय रिएक्टर में प्रयुक्त किये जाने वाले किन्हीं दो मन्दकों के नाम लिखिए।(2013)
उत्तर:
भारी जल तथा ग्रेफाइट।

UP Board Solutions

प्रश्न 37:
नाभिकीय रिएक्टर में भारी जल एक उपयुक्त मन्दक क्यों है? (2009)
उत्तर:
चूँकि यह हाइड्रोजनीय पदार्थ है इसलिए इसमें न्यूट्रॉनों के टकराने पर इनके वेग में अधिक कमी होती है।

प्रश्न 38:
युग्म उत्पादन से आप क्या समझते हैं? इसका एक उदाहरण दीजिए। (2014)
उत्तर:
जब कोई ऊर्जिते गामा-किरण फोटॉन किसी भारी पदार्थ पर गिरता है तो वह पदार्थ के किसी नाभिक द्वारा अवशोषित कर लिया जाता है तथा उसकी ऊर्जा से एक इलेक्ट्रॉन व एक पॉजिट्रॉन की उत्पत्ति हो जाती है। इस प्रक्रिया को युग्म-उत्पादन कहते हैं तथा इसे निम्न समीकरण से प्रदर्शित करते हैं
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 37

प्रश्न 39:
यदि एक़ नाभिकीय संलयन प्रक्रिया में द्रव्यमान क्षति 0.3% हो, तो 1 किग्रा द्रव्यमान की नाभिकीय संलयन प्रक्रिया में कितनी ऊर्जा मुक्त होगी? (2009, 11, 12)
हल:
Δm = 1 किग्रा का 0.3% = 0.003 किग्रा
अतः मुक्त ऊर्जा E = Δm x c = 0.003 किग्रा x (3 x 108 मी/से)2
= 0.027 x 1016 जूल
= 2.7 x 1014 जूले

प्रश्न 40:
एक [latex]^{ 235 }{ U }[/latex] नाभिक के विखण्डन से 150 मिलियन इलेक्ट्रॉन-वोल्ट ऊर्जा उत्पन्न होती है। एक रिएक्टर 4.8 मेगावाट शक्ति दे रहा है। रिएक्टर में प्रति सेकण्ड विखण्डित हो रहे नाभिकों की संख्या की गणना कीजिए।    (2015) 
हल:
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 41:
एक नाभिक ZXA एक α-कण तथा एक β-कण का उत्सर्जन करता है। उत्सर्जन के बाद नयी नाभिक क्या होगा? (2015)
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 38

प्रश्न 42:
नाभिकीय संलयन में 1 ग्राम हाइड्रोजन से 0.993 ग्राम हीलियम प्राप्त होती है। यदि जनित्र की दक्षता 5% हो तो उत्पन्न ऊर्जा की गणना कीजिए। (2017)
हल:
द्रव्यमान क्षति Δm = 1-0.993 = 0.007 ग्राम = 7 x 10-6 किग्रा
अतः उत्पन्न ऊर्जा ΔE = (Δm) x c2
= 7 x 10-6 x 9 x 1016 x 5% जूल = 315 x 108 जूल
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 43:
यदि नाभिक 13Al27 की त्रिज्या 3.6 फर्मी हो तब नाभिक 52Te125 की त्रिज्या ज्ञात (2018)
हल:
सूत्र, R = R0A1/3 से,
जहाँ, R0 = 1.2 x 10-15 m
तथा A = नाभिक की द्रव्यमान संख्या है।
यदि R1 तथा R2 क्रमश: Al वे Te की नाभिकीय त्रिज्याएँ हैं, तो
R1 = R0 (27)1/3 = 3R0 तथा
R = R0(125)1/3 = 5R0
R1 को R2 से भाग देने पर,
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 44:
किसी नाभिक की त्रिज्या (r) तथा नाभिक के परमाणु द्रव्यमान संख्याA) में क्या सम्बन्ध है?  (2018)
हल:
R3 α A
R α A1/3
R = R0 A1/3
जहाँ R0 = फर्मी नियतांक
R= नाभिक की त्रिज्या
A = परमाणु द्रव्यमान त्रिज्या

लघु उत्तरीय प्रश्न

प्रश्न 1:
अन्त:नाभिकीय बल से क्या तात्पर्य है? इन बलों की प्रकृति के बारे में क्या तथ्य प्राप्त किये गये? (2017)
या
अन्तःनाभिकीय बलों के गुण लिखिए। या नाभिकीय बल किसे कहते हैं? (2012, 17)
उत्तर:
नाभिकीय बल (Nuclear Forces):
किसी भी परमाणु के नाभिक में दो मूल कण, प्रोटॉन एवं न्यूट्रॉन होते हैं। समान रूप से आवेशित कण होने के कारण प्रोटॉनों के बीच एक वैद्युत प्रतिकर्षण बल कार्य करता है, जबकि आवेश-रहित न्यूट्रॉनों के बीच इस प्रकार का कोई बल नहीं लगता। ये कण नाभिक के अत्यन्त सूक्ष्म (UPBoardSolutions.com) स्थान (≈ 10-15 मीटर) में एक साथ कैसे रहते हैं? इस तथ्य को समझने के लिए यह परिकल्पना की गयी कि नाभिक के भीतर ऐसे बल कार्यशील रहते हैं। जो कि न्यूक्लिऑनों को परस्पर नाभिक में एक साथ बाँधे रखते हैं। इन बलों को ‘नाभिकीय बल’ (nuclear forces) कहते हैं। इन बलों के विषय में निम्नलिखित तथ्य ज्ञात हुए हैं

  1. ये बल आकर्षण-बल हैं अन्यथा समान आवेश के प्रोटॉन नाभिक जैसे सूक्ष्म स्थान में जमा नहीं रह पाते।
  2.  ये बल अत्यन्त तीव्र (very strong) हैं। मानव जानकारी में अब तक जितने भी बल ज्ञात हैं उनमें सबसे अधिक तीव्र नाभिकीय-बल ही हैं।
  3. ये वैद्युत बल नहीं हैं। यदि ये वैद्युत बल होते, तो इनके कारण प्रोटॉनों के बीच प्रतिकर्षण होता और नाभिक की संरचना सम्भव न हो पाती।
  4.  ये गुरुत्वीय बल भी नहीं हैं। दो न्यूक्लिऑनों के बीच गुरुत्वीय बल बहुत क्षीण होते हैं, जबकि नाभिकीय बल अत्यन्त तीव्र होते हैं।
  5. ये बल आवेश पर किसी प्रकार भी निर्भर नहीं करते अर्थात् विभिन्न न्यूक्लिऑनों के बीच | (जैसे -प्रोटॉन-प्रोटॉन के बीच, न्यूट्रॉन-न्यूट्रॉन के बीच, प्रोटॉन-न्यूट्रॉन के बीच) बल एकसमान (uniform) होते हैं।
  6. ये बल अत्यन्त लघु परिसर (short range) के हैं। अतः ये बहुत कम दूरी (केवल नाभिकीय
    व्यास, 10-15 मीटर के अन्दर) तक ही प्रभावी होते हैं।

UP Board Solutions

प्रश्न 2:
किसी नाभिक की द्रव्यमान क्षति क्या है? इससे बन्धन ऊर्जा कैसे प्राप्त होती है।
या
द्रव्यमान क्षति किसे कहते हैं? समझाइए। बन्धन ऊर्जा तथा नाभिक के स्थायित्व में क्या सम्बन्ध है?
या
किसी नाभिक की बन्धन ऊर्जा से क्या तात्पर्य है? (2009, 11, 14, 15)
या
द्रव्यमान क्षति से क्या तात्पर्य है? या नाभिक की द्रव्यमान क्षति एवं बन्धन ऊर्जा से क्या तात्पर्य है? (2013)
या
नाभिक के द्रव्यमान क्षति से आप क्या समझते हैं? द्रव्यमान क्षति नाभिक की बन्धन ऊर्जा से कैसे सम्बन्धित है? (2014)
या
नाभिकीय बन्धन ऊर्जा से क्या तात्पर्य है? (2015)
उत्तर:
देव्यमान क्षति: नाभिक का वास्तविक द्रव्यमान उसमें उपस्थित प्रोटॉनों तथा न्यूट्रॉनों के द्रव्यमानों के योग से सदैव कुछ कम होता है। द्रव्यमानों का यह अन्तर द्रव्यमान क्षति (mass defect) कहलाता है।
द्रव्यमान क्षति = (प्रोटॉनों का द्रव्यमान + न्यूट्रॉनों का द्रव्यमान) – नाभिक का द्रव्यमान
माना किसी परमाणु B की (UPBoardSolutions.com) द्रव्यमान संख्या A तथा परमाणु क्रमांक Z है, तो इसके नाभिक में प्रोटॉनों की संख्या Z तथा न्यूट्रॉनों की संख्या (A – Z) होगी। यदि प्रोटॉन का द्रव्यमान mp न्यूट्रॉनों का द्रव्यमान mएवं नाभिक का द्रव्यमान M हो, तो द्रव्यमान क्षति Δm = [Zmp + (A -Z)mn]- M द्रव्यमान क्षति Δm को अर्थ है कि जब प्रोटॉन तथा न्यूट्रॉन मिलकर नाभिक का निर्माण करते हैं तो Δm द्रव्यमान लुप्त हो जाता है तथा इसके तुल्य ऊर्जा (Δm) c² मुक्त हो जाती है। इस ऊर्जा के कारण ही प्रोटॉन व न्यूट्रॉन नाभिक में बंधे रहते हैं। इसे नाभिक की बन्धन ऊर्जा कहते हैं।
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

 बन्धन ऊर्जा तथा नाभिक के स्थायित्व में सम्बन्ध:
किसी नाभिक की प्रति-न्यूक्लिऑन बन्धन ऊर्जा जितनी अधिक होती है वह उतना ही अधिक स्थायी होता है।

प्रश्न 3:
6C12 की प्रति न्यूक्लिऑन बन्धन ऊर्जा की गणना कीजिए।
दिया गया है, 6C12 का द्रव्यमान = 12.0038 amu
प्रोटॉन का द्रव्यमान = 1.0081 amu
न्यूट्रॉन का द्रव्यमान = 1.0090 amu (2013)
हल:
6C12 नाभिक में प्रोटॉन = Z = 6
तथा  न्यूट्रॉन = A – Z = 12 – 6 = 6
अतः 6C12 नाभिक में न्यूक्लिऑनों की संख्या = A = 12
∴ 6C12 नाभिक में न्यूक्लिऑनों का द्रव्यमान
= (6 प्रोटॉनों +6 न्यूट्रॉनों) का द्रव्यमान
= 6(1.0081+1.0090) amu
= 6 x 2. 0171 amu = 12.1026 amu
∴ द्रव्यमान क्षति Δm = न्यूक्लिऑनों का द्रव्यमान – नाभिक का द्रव्यमान
= 12.1026 amu-12.0038 amu== 0.0988 amu
कुल बन्धन ऊर्जा EB = Δm द्रव्यमान के तुल्य ऊर्जा
= 0.0988 x 931 MeV= 91.9828 MeV
∴ प्रति न्यूक्लिऑन बन्धन ऊर्जा = [latex]\frac { { E }_{ B } }{ A }[/latex]  = [latex]\frac { 91.9828 }{ 12 }[/latex] MeV
= 7.665 MeV

UP Board Solutions

प्रश्न 4:
एक 29Cu63 के सिक्के को द्रव्यमान 3.0 ग्राम है। उस ऊर्जा की गणना MeV में कीजिए जो इस सिक्के के सभी न्यूट्रॉनों एवं प्रोटॉनों को एक-दूसरे से अलग करने के लिए आवश्यक हो।
दिया है, 29Cu63 का द्रव्यमान= 62.9296,
mP = 1.0078 amu,
mn = 1,0086 amu,
me = 0.0005 amu,
1 amu = 931.5 MeV (2015)
हल:
29Cu63 नाभिक में प्रोटॉन (Z) = 29
न्यूट्रॉन = 63 – 29= 34
न्यूक्लिऑनों की संख्या (A) = 63
∴ न्यूक्लिऑनों का द्रव्यमान = (29 x 1.0078+ 34 x 1.0086)
= 63.5186 amu
द्रव्यमान क्षति (ΔM) = 63.5186- 62.9296= 0.589 amu
∴ बन्धन ऊर्जा (EB ) = Δm x 931 MeV
= 0.589 x 931 MeV
= 548.359 Mev

प्रश्न 5:
हीलियम नाभिक (2He4) के लिये द्रव्यमान क्षति 0.0304 amu है। इसकी प्रति न्यूक्लिऑन नाभिकीय बन्धन ऊर्जा ज्ञात कीजिए। (2013)
हल:
Δm = 0.0304 amu
कुल वन्धन ऊर्जा = 0.0304 MeV x 931 MeV/amu
= 28.3024 MeV
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 6:
एक न्यूट्रॉन का द्रव्यमान 1.00867amu तथा प्रोटॉन को द्रव्यमान 1.00728 amu है। यदि हीलियम नाभिक (α-कण) का द्रव्यमान 4,00150 amu हो, तो हीलियम की बन्धन ऊर्जा प्रति न्यूक्लिऑन eV में ज्ञात कीजिए। (2012, 14)
हल:
हीलियम की बन्धन ऊर्जा E
= [(प्रोटॉनों का द्रव्यमान + न्यूट्रॉनों का द्रव्यमान) – (He नाभिक का द्रव्यमान)] x 931MeV
= [(2 x 1.00728 + 2 x 1.00867) – (4.00150)] x 931
= 0.0304 x 931= 28.30 MeV= 28.3 x 106MeV

प्रश्न 7:
बन्धन ऊर्जा से क्या तात्पर्य है? यदि प्रोटॉन, न्यूट्रॉन तथा ऐल्फा (α) कणों के द्रव्यमान क्रमशः 1.00728 amu, 1.00867 amu तथा 4.00150 amu हों, तो α कण की प्रति न्यूक्लिऑन बन्धन ऊर्जा ज्ञात कीजिए। [1 amu= 931 MeV] (2016, 17)
हल:
बन्धन ऊर्जा:
किसी नाभिक की बन्धन ऊर्जा वह न्यूनतम ऊर्जा है जो नाभिक के न्यूक्लिऑनों को अनन्त दूरी तक अलग-अलग करने के लिए आवश्यक है।

प्रति न्यूक्लिऑन बन्धन ऊर्जा:
α कण हीलियम 2He4 का नाभिक है। जिसमें दो प्रोटॉन तथा दो न्यूट्रॉन होते हैं।
∵ दो प्रोटॉनों का द्रव्यमान = 2 x 1.00728 = 2.01456 amu
दो न्यूट्रॉनों का द्रव्यमान = 2 x 1.00867 = 2.01734 amu
इनका योग = 4.03190 amu
अतः द्रव्यमान क्षति Δm = न्यूक्लिऑनों का द्रव्यमान – α कण का द्रव्यमान
= 4.03190 amu – 4.00150 amu = 0.03040 amu
1 amu के तुल्य ऊर्जा 931 MeV होती है।
अतः 0.03040 के तुल्य ऊर्जा, Δ E = 0.03040 x 931 = 28.3 MeV
यह α कण की बन्धन ऊर्जा है।
α  कण में 4 न्यूक्लिऑन (2 प्रोटॉन व 2 न्यूट्रॉन) होते हैं। अतः प्रति न्यूक्लिऑन बन्धन ऊर्जा [latex]\frac { \Delta E }{ 4 }[/latex]
= [latex]\frac { 28 }{ 3 }[/latex]  = 7.07 MeV

UP Board Solutions

प्रश्न 8:
परमाणु द्रव्यमान मात्रक (a.m.u.) की परिभाषा दीजिए। इसका मान किलोग्राम तथा MeV में व्यक्त कीजिए। (2017)
उत्तर:
मूल कणों, नाभिकों तथा परमाणुओं के द्रव्यमान अति सूक्ष्म होते हैं, अत: इनके द्रव्यमानों को व्यक्त करने के लिए एक बहुत छोटा मात्रक चुना गया है, जिसे परमाणु द्रव्यमान मात्रक (a.m.u.) कहते हैं। 1 a.m.u. कार्बन परमाणु के द्रव्यमान के बारहवें भाग के बराबर होता है।
1a.m.u. = 1.66 x 10-27 किग्रा ।
1 a.m.u. = 931 MeV

प्रश्न 9:
निम्नलिखित अभिक्रिया में निर्मुक्त ऊर्जा की गणना कीजिए (2017)
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 39
हल:
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 10:
निम्नलिखित समीकरणों को पूरा कीजिए
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 40
उत्तर:
(i) 2He4
(ii) 6C12
(iii) 290Th234
(iv) 0n1

प्रश्न 11:
प्राकृतिक रेडियोऐक्टिवता में मिलने वाली तीनों प्रकार की किरणों के गुणों की तुलना कीजिए।
उत्तर:
α-कण, β-कण तथा  γ-किरणों के गुणों की तुलना
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 12:
अर्द्ध-आयु तथा क्षय नियतांक में सम्बन्ध का सूत्र स्थापित कीजिए। (2017)
या
किसी रेडियो-सक्रिय पदार्थ की अर्द्ध-आयु, माध्य आयु तथा क्षय नियतांक के बीच सम्बन्ध का निगमन कीजिए।
या
रेडियोऐक्टिव पदार्थ के लिए अर्द्ध-आयु काल एवं क्षय नियतांक में सम्बन्ध स्थापित कीजिए। (2014, 15, 16)
उत्तर:
अर्द्ध-आयु तथा क्षय नियतांक में सम्बन्ध:
यदि प्रारम्भ में (t = 0) किसी रेडियोऐक्टिव पदार्थ की मात्रा (परमाणु की संख्या) N0 तथा इसकी अर्द्ध-आयु T है तथा t समय पश्चात् पदार्थ की मात्रा N रह जाए, तो
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 13:
एक रेडियोऐक्टिव पदार्थ की सक्रियता 32 वर्षों में घटकर अपने प्रारम्भिक मान कारह [latex]\frac { 1 }{ 16 }[/latex] जाती है। पदार्थ की अर्द्ध-आयु की गणना कीजिए। (2009, 12)
हल:
यदि किसी रेडियोऐक्टिव पदार्थ की प्रारम्भिक मात्रा N0 है, तब n अर्द्ध-आयुओं के पश्चात् बचे पदार्थ की मात्रा
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 14:
एक रेडियोऐक्टिव पदार्थ की सक्रियता 33 वर्षों में घटकर अपने प्रारम्भिक मान का  [latex]\frac { 1 }{ 8 }[/latex] रह जाती है। पदार्थ की अर्द्ध-आयु एवं क्षय-नियतांक की गणना कीजिए। (2016)
हल:
माना रेडियोऐक्टिव पदार्थ की प्रारम्भिक मात्रा N0 है, तब n अर्द्ध-आयुओं के पश्चात् बचे पदार्थ की मात्रा
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 41

UP Board Solutions

प्रश्न 15:
रदरफोर्ड-सोडी के रेडियोऐक्टिव क्षय का नियम क्या है? दो रेडियोऐक्टिव स्रोत A तथा B की अर्द्ध-आयु क्रमशः 1 घण्टा तथा 4 घण्टा है। यदि प्रारम्भ में A व B के रेडियोऐक्टिव परमाणुओं की संख्या समान हो तो 4 घण्टे के पश्चात् इन दोनों की सक्रियताओं का अनुपात क्या होगा? (2016)
हल:
रदरफोर्ड सोडी के क्षय नियतांक के लिए दीर्घ उत्तरीय प्रश्न 3 का उत्तर देखें।
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

प्रश्न 16:
नाभिकीय संलयन से क्या तात्पर्य है? (2012, 17)
या नाभिकीय संलयन क्या है? (2014)
उत्तर:
नाभिकीय संलयन (Nuclear Fusion)-दो हल्के नाभिकों के परस्पर संयुक्त होकर भारी नाभिक बनाने की प्रक्रिया को नाभिकीय संलयन कहते हैं। संलयन से प्राप्त नाभिक का द्रव्यमान, संलयन करने वाले मूल नाभिकों के द्रव्यमानों के योग से कम होता है तथा द्रव्यमान के इस अन्तर के तुल्य (UPBoardSolutions.com) ऊर्जा इस प्रक्रिया में मुक्त होती है।
उदाहरण के लिए, भारी हाइड्रोजन अथवा ड्यूटीरियम ( 1H2) के दो नाभिकों के संलयन को इस समीकरण द्वारा व्यक्त कर सकते है ।
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 42
ड्यूटीरियम ड्यूटीरियम ट्राइटियम हाइड्रोजन ऊर्जा ट्राइटियम पुनः ड्यूटीरियम के नाभिक से संलयित होकर हीलियम नाभिक का निर्माण करता है।
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 43

प्रश्न 17:
नाभिकीय विखण्डन क्या है? इसे प्रदर्शित करने का एक समीकरण दीजिए। नाभिकीय विखण्डन में ऊर्जा कहाँ से उत्सर्जित होती है? (2015, 17)
उत्तर:
नाभिकीय विखण्डन-इस प्रक्रिया में किसी भारी नाभिक पर न्यूट्रॉनों की बमबारी किये जाने पर यह नाभिक दो लगभग बराबर नाभिकों में टूट जाता है।
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 44
नाभिकीय विखण्डन की प्रक्रिया में अपार ऊर्जा उत्पन्न होने का कारण है कि इस प्रक्रिया में प्राप्त नाभिकों तथा न्यूट्रॉनों का द्रव्यमान मूल नाभिक तथा न्यूरॉन के द्रव्यमान से कुछ कम होता है, अर्थात् इस प्रक्रिया में कुछ द्रव्यमान की क्षति होती है। यह द्रव्यमान क्षति ही आइन्स्टीन के द्रव्यमान-ऊर्जा सम्बन्ध के अनुसार ऊर्जा के रूप में परिवर्तित होकर प्राप्त होती है।

UP Board Solutions

प्रश्न 18:
क्रान्तिक द्रव्यमान तथा नियन्त्रित श्रृंखला अभिक्रिया से आप क्या समझते हैं? (2013)
उत्तर:
क्रान्तिक द्रव्यमान (Critical Mass):
किसी विखण्डनीय पदार्थ का उसके क्रान्तिक आकार के संगत वह द्रव्यमान जो श्रृंखला अभिक्रिया को जारी रखने के लिए आवश्यक होता है, क्रान्तिक द्रव्यमान कहलाता है।

नियन्त्रित श्रृंखला अभिक्रिया (Controlled Chain Reaction):
यह अभिक्रिया कृत्रिम उपायों द्वारा इस प्रकार नियन्त्रित की जाती है कि प्रत्येक विखण्डन से उत्पन्न न्यूट्रॉनों में से केवल एक ही न्यूट्रॉन विखण्डन कर पाये । इस प्रकार (UPBoardSolutions.com) अभिक्रिया में नाभिकों के विखण्डन की दर नियन्त्रित रहती है। अतः यह क्रिया धीरे-धीरे होती है तथा इसमें उत्पन्न ऊर्जा लाभदायक कार्यों के लिए प्रयुक्त की जा सकती है।

दीर्घ उत्तरीय प्रश्न

प्रश्न 1:
समभारिक’ तथा ‘समस्थानिक’ पदों के अर्थ समझाइए।   (2013)
या
समस्थानिक तथा समभारिक का अर्थ दो-दो उदाहरण देकर समझाइए।
या
समस्थानिक का अर्थ एक उदाहरण देकर समझाइए। (2015, 7)
या
समभारिक का अर्थ उदाहरण सहित समझाइए। (2015, 17)
उत्तर:
1. समस्थानिक अथवा समप्रोटॉनिक (Isotopes or Isoprotons):
किसी एक ही तत्त्व के ऐसे परमाणु जिनके नाभिकों में प्रोटॉनों की संख्या समान होती है, परन्तु न्यूट्रॉनों की संख्या भिन्न-भिन्न होती है, उस तत्त्व के ‘समस्थानिक’ या ‘समप्रोटॉनिक’ कहलाते हैं। इस प्रकार किसी तत्त्व के विभिन्न समस्थानिकों के परमाणु क्रमांक (Z) समान होते हैं, परन्तु द्रव्यमान (UPBoardSolutions.com) संख्या (A) भिन्न-भिन्न होती है। क्योंकि इनके परमाणु-क्रमांक समान हैं, अत: आवर्त सारणी में इनका स्थान समान होता है। इसी कारण इन्हें समस्थानिक भी कहते हैं।
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 45
(2) समभारिक (Isobaric): ऐसे नाभिकों को जिनमें न्यूक्लिऑनों की कुल संख्या समान होती है, परन्तु प्रोटॉनों और न्यूट्रॉनों की संख्या भिन्न-भिन्न होती है; समभारिक’ कहते हैं। इन नाभिकों का परमाणु क्रमांक (Z) भिन्न-भिन्न तथा द्रव्यमान संख्या (A) समान होती है। अतः आवर्त सारणी में इनका स्थान भिन्न-भिन्न होता है और इनके रासायनिक गुण भी एक जैसे नहीं होते।
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 46

प्रश्न 2:
विभिन्न नाभिकों की बन्धन ऊर्जा प्रति न्यूक्लिऑन का द्रव्यमान संख्या (A) के साथ परिवर्तन, ग्राफ द्वारा निरूपित कीजिए। कारण बताते हुए समझाइए कि क्यों हल्के नाभिकों का सामान्यतः नाभिकीय संलयन होता है?  (2014)
उत्तर:
विभिन्न परमाणुओं के नाभिकों के स्थायित्व की तुलना करने के लिये नाभिकों की ‘प्रति न्यूक्लिऑन बन्धन-ऊर्जा’ (binding energy per nucleon) ज्ञात करते हैं। किसी नाभिक की प्रति न्यूक्लिऑन बन्धन-ऊर्जा जितनी अधिक होती है; नाभिक उतना ही अधिक स्थायी होता है। (UPBoardSolutions.com) विभिन्न परमाणुओं के नाभिकों के स्थायित्व का अध्ययन करने के लिये इनकी प्रति न्यूक्लिऑन बन्धन-ऊर्जा तथा द्रव्यमान-संख्या के बीच ग्राफ खींचा जाता है। प्राप्त वक्र को बन्धन-ऊर्जा वक्र’ कहते हैं (चित्र 13.4)। इस वक़ से निम्न महत्त्वपूर्ण निष्कर्ष प्राप्त होते हैं

  1. द्रव्यमान संख्या लगभग A = 50 से A = 80 तक के बीच वक्र में एक सपाट शिखर (flat maximum) है जिसके संगत औसत प्रति न्यूक्लिऑन बन्धन-ऊर्जा लगभग 8.5 MeV है। अतः वे नाभिक जिनकी द्रव्यमान संख्याएँ 50 व 80 के बीच हैं, अधिक स्थायी हैं। इनमें Fe56, जिसकी प्रति न्यूक्लिऑन बन्धन-ऊर्जा अधिकतम (लगभग 8.8 MeV) हैं, सबसे अधिक स्थायी हैं
    UP Board Solutions for Class 12 Physics Chapter 13 Nuclei
  2. 80 से ऊँची द्रव्यमान-संख्या वाले नाभिकों के लिए प्रति न्यूक्लिऑन बन्धन-ऊर्जा धीरे-धीरे घटती जाती है तथा यूरेनियम नाभिक (A = 238) के लिए लगभग 7.6 MeV रह जाती है। अत: नाभिकों को स्थायित्व भी घटता जाता है। यही कारण है कि 83Bi209 के आगे वाले भारी नाभिक रेडियोऐक्टिव हैं।
  3. 50 से नीची द्रव्यमाने-संख्या वाले नाभिकों के लिए भी प्रति न्यूक्लिऑन बन्धन-ऊर्जा घटने लगती है, तथा 20 से नीचे बहुत तेजी से घट जाती है। उदाहरण के लिए, भारी हाइड्रोजन (A = 2) के लिए यह केवल 1.1 MeV होती है। इससे यह पता चलता है कि 20 से नीचे द्रव्यमान संख्या वाले
    नाभिक अपेक्षाकृत कम स्थायी हैं।
  4. A = 50 से नीचे, वक्र सतत रूप से नहीं गिरता, बल्कि 8O16, 6C12तथा ,2He4नाभिकों पर गौण शिखर प्राप्त होते हैं। इससे यह निष्कर्ष निकलता है कि ये (सम-सम) नाभिक समीप की द्रव्यमान-संख्याओं वाले अन्य नाभिकों से अधिक स्थायी हैं।
  5.  यह वक्र मोटे तौर पर बताता है कि बहुत भारी तथा बहुत हल्के नाभिकों की प्रति न्यूक्लिऑन बन्धन-ऊर्जा बाद वाले नाभिकों के सापेक्ष कम होती है। अत: यदि हम किसी बहुत भारी नाभिक (जैसे यूरेनियम) को किसी विधि द्वारा अपेक्षाकृत हल्के (अर्थात् बीच वाले) नाभिकों में तोड़ लें तो प्रति न्यूक्लिऑन बन्धन-ऊर्जा बढ़ जायेगी। अत: इस प्रक्रिया में ऊर्जा बहुत बड़ी मात्रा में मुक्त होगी। इस प्रक्रिया को ‘नाभिकीय विखण्डन (nuclear fission) कहते हैं।

इसी प्रकार, यदि हम दो अथवा अधिक बहुत हल्के नाभिकों (जैसे भारी हाइड्रोजन 1Hके नाभिक) को किसी विधि द्वारा अपेक्षाकृत भारी नाभिक (जैसे-2He4) में संयुक्त कर लें तब भी प्राप्त न्यूक्लिऑन बन्धन-ऊर्जा बढ़ जायेगी। इस प्रक्रिया में भी अत्यधिक ऊर्जा मुक्त होगी। इस प्रक्रिया को ‘नाभिकीय संलयन’ (nuclear fusion) कहते हैं।

प्रश्न 3:
यदि λ क्षय नियतांक है, तो सिद्ध कीजिए कि N = N0e-λt, जहाँ Na और N क्रमशः समय है t= 0 तथा t समय के बाद परमाणुओं की संख्याएँ हैं। (2009, 14)
या
रेडियोऐक्टिव क्षय से सम्बन्धित रदरफोर्ड-सोडी का नियम क्या है? (2012, 16, 17)
या
रदरफोर्ड-सोडी नियम क्या है ? सूत्र N = N0e-λt का व्युत्क्रम कीजिए। (2018)
उत्तर:
रेडियोऐक्टिव क्षय से सम्बन्धित रदरफोर्ड तथा सोडी का नियम: इस नियम के अनुसार, “किसी भी क्षण रेडियोऐक्टिव परमाणुओं के क्षय होने की दर उस क्षण उपस्थित परमाणुओं की संख्या के अनुक्रमानुपाती होती है।” माना किसी क्षण t पर उपस्थित परमाणुओं की (UPBoardSolutions.com) संख्या N है तथा (t + dt) क्षण पर यह संख्या घटकर (N – dN ) रह जाती हो, तो परमाणुओं के क्षय होने की दर = – (dN/dt) तथा रदरफोर्ड-सोडी के नियमानुसार,
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

जहाँ N0 व N क्रमशः प्रारम्भ में (t = 0 क्षण पर) तथा t समय पश्चात् किसी रेडियोऐक्टिव पदार्थ में परमाणुओं की संख्याएँ हैं। इसे समीकरण से स्पष्ट है कि किसी रेडियोऐक्टिव पदार्थ का क्षय चर घातांक नियम (exponential law) के अनुसार होता है, अर्थात् क्षय प्रारम्भ में तेजी से होता है तथा फिर इसकी दर लगातार घटती जाती है। अतः किसी रेडियोऐक्टिव पदार्थ को पूर्णतः क्षय होने में अनन्त समय
लगता है।

प्रश्न 4:
किसी रेडियोऐक्टिव पदार्थ के नमूने में किसी समय अविघटित पदार्थ 25% रहता है।
10 सेकण्ड के उपरान्त अविघटित पदार्थ घटकर 12.5% रह जाता है। ज्ञात कीजिए
(i) पदार्थ की माध्य आयु।
(ii) वह समय जब अविघटित पदार्थ घटकर विघटित पदार्थ का 6.25% हो जाए। (2013)
हल:
(i) किसी क्षण अविघटित नाभिकों की संख्या 25% है। 10 सेकण्ड पश्चात् यह 12.5% (आधी) रह जाती है। इसका अर्थ है कि रेडियोऐक्टिव पदार्थ की अर्द्ध-आयु 10 सेकण्ड है अर्थात्
T = 10 सेकण्ड
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 47

प्रश्न 5:
सूर्य से ऊर्जा नाभिकीय संलयन प्रक्रिया से किस प्रकार प्राप्त हो रही है? आवश्यक समीकरण सहित समझाइए। यह अभिक्रिया सामान्य ताप पर क्यों नहीं होती है?
या
सूर्य में ऊर्जा किस प्रकार पैदा होती है ? आवश्यक समीकरण सहित समझाइए। ये अभिक्रियाएँ अति उच्च ताप पर ही क्यों होती हैं? (2009)
या
हम जानते हैं कि हमें लाखों वर्षों से सूर्य से असीमित ऊर्जा प्राप्त हो रही है। सूर्य की इस असीमित ऊर्जा के स्रोत को नाभिकीय समीकरणों की सहायता से स्पष्ट कीजिए (2010)
या
नाभिकीय संलयन के आधार पर सौर ऊर्जा के स्रोत की व्याख्या आवश्यक समीकरणों के साथ कीजिए। (2011)
ताप-नाभिकीय अभिक्रियाओं द्वारा सूर्य में नाभिकीय संलयन की प्रक्रिया समझाइए। ये अभिक्रियाएँ अति उच्च ताप पर ही क्यों होती हैं? (2013)
या
सूर्य से ऊर्जा नाभिकीय संलयन द्वारा कैसे उत्पन्न होती है? आवश्यक समीकरणों की सहायता से समझाइए। (2014)
उत्तर:
सन् 1939 में अमेरिकी वैज्ञानिक एच० ए० बेथे (H.A. Bethe) ने बताया कि सूर्य पर लगातार नाभिकीय संलयन होता रहता है, जिससे वह अविरत रूप से ऊर्जा का उत्सर्जन कर रहा है। इस विषय में उन्होंने निम्नलिखित स्पष्टीकरण प्रस्तुत कियासूर्य की अपार ऊर्जा का स्रोत हल्के नाभिकों का संलयन (fusion) है। सूर्य के द्रव्य में 90% अंश तो हाइड्रोजन व हीलियम का है तथा शेष 10% अंश में अन्य तत्त्व हैं जिनमें अधिकांश हल्के तत्त्व हैं। सूर्य के बाहरी पृष्ठ का ताप लगभग 8000 K है तथा इसके भीतरी भाग का ताप (UPBoardSolutions.com) लगभग 2 x 107 K है। इतने ऊँचे ताप पर सूर्य में उपस्थित समस्त तत्त्वों के परमाणुओं की कक्षाओं से इलेक्ट्रॉन निकल जाते हैं; अत: वे तत्त्व नाभिकीय अवस्था में रह जाते हैं। ये नाभिक इतने तीव्रगामी होते हैं कि इनकी परस्पर टक्कर से इनका स्वतः ही संलयन होता रहता है और अपार ऊर्जा विमुक्त होती रहती है। वैज्ञानिक बेथे के अनुसार सूर्य पर नाभिकीय संलयन की प्रक्रिया निम्नलिखित दो प्रकार से पूर्ण होती है

1. कार्बन-साइकिल (Carbon Cycle):
सन् 1939 में अमेरिकन वैज्ञानिक बेथे (Bethe) ने यह बताया कि सूर्य में चार हाइड्रोजन नाभिकों (चार प्रोटॉनों) का एक हीलियम नाभिक में संलयन सीधे न होकर, कई ताप-नाभिकीय अभिक्रियाओं (thermonuclear reactions) की एक साइकिल के द्वारा होता है जिसमें कार्बन एक उत्प्रेरक का कार्य करता है। इस साइकिल को ‘कार्बन-साइकिल’ कहते हैं। इस साइकिल में छ: अभिक्रियाएँ निम्नलिखित क्रमानुसार होती हैं
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei
इस प्रकार, एक पूरी कार्बन-साइकिल में चार हाइड्रोजन के नाभिक संलयित होकर एक हीलियम नाभिक का निर्माण करते हैं तथा इसके साथ दो (UPBoardSolutions.com) पॉजिट्रॉन (+1β0) व 24.7 MeV ऊर्जा उत्सर्जित होती है। ये पॉजिट्रॉन दो इलेक्ट्रॉनों से विनाशित (annihilate) होकर लगभग 2 MeV ऊर्जा की उत्पत्ति करते हैं। इस प्रकार एक कार्बन-साइकिल में कुल 26.7 Mev ऊर्जा उत्पन्न होती है। चूंकि सूर्य के द्रव्य के 1 ग्राम में लगभग 2 x 1023 प्रोटॉन होते हैं, अतः सूर्य के 1 ग्राम द्रव्य से अपार ऊर्जा की उत्पत्ति हो जाती हैं।

2. प्रोटॉन-प्रोटॉन साइकिल H-H Cycle):

नये नाभिकीय आँकड़ो  के आधार पर अब यह विश्वास किया जाता है कि सूर्य में कार्बन-साइकिल की अपेक्षा एक अन्य साइकिल की अधिक सम्भावना है जिसे ‘प्रोटॉन-प्रोटॉन साइकिल’ कहते हैं। इस साइकिल में भी कई अभिक्रियाओं के द्वारा हाइड्रोजन के नाभिक संलयित होकर हीलियम के नाभिक का निर्माण करते हैं
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei
स्पष्ट है कि इस साइकिल का नेट परिणाम ठीक वही है जो कार्बन-साइकिल का है। इस साइकिल की तीसरी अभिक्रिया होने के लिए यह आवश्यक है कि पहली दो अभिक्रियाएँ दो-दो बार हों।

सामान्य ताप व दाब पर संलयन असम्भव:
इसका कारण यह है कि जब संलयन होने वाले धनावेशित नाभिक क-;सर के निकट आते हैं तो उनके बीच वैद्युत प्रतिकर्षण बल अति तीव्र हो जाता है। इस बल के (UPBoardSolutions.com) विरुद्ध संलयितं, होने के लिए उन्हें बहुत अधिक ऊर्जा (≈ 0.1 MeV) चाहिए। इन्हें इतनी अधिक ऊर्जा देने के लिए अति उच्च ताप ≈10° K तथा अति उच्च दाब चाहिए। ताप व दाब की ये दशाएँ पृथ्वी पर साधारणतया अंकृतिक रूप में उपलब्ध नहीं हैं।

UP Board Solutions

प्रश्न 6:
नाभिकीय विखण्डन तथा नाभिकीय संलयन में अन्तर स्पष्ट कीजिए। दी गई संलयन प्रक्रिया में उत्पन्न ऊर्जा की गणना कीजिए (2016)
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei 48
उत्तर:
नाभिकीय विखण्डन तथा नाभिकीय संलयन में अन्तर नाभिकीय विखण्डन में एक ‘भारी’ नाभिक न्यूट्रॉनों की बमबारी से दो अपेक्षाकृत हल्के रेडियोऐक्टिव नाभिकों में टूटता है जिनका सम्मिलित द्रव्यमान मूल नाभिक के द्रव्यमान से कम होता है। द्रव्यमान की यह क्षति ऊर्जा के रूप में (UPBoardSolutions.com) मुक्त होती है।
इसके विपरीत, संलयन में दो अथवा अधिक ‘हल्के’ नाभिक एक अकेले नाभिक में संलयित (fuse) हो जाते हैं जिसका द्रव्यमान संलयित होने वाले नाभिकों के द्रव्यमानों के योग से कम होता है। पुनः, द्रव्यमान की यह क्षति ऊर्जा के रूप में मुक्त होती है। यह प्रक्रिया अत्यन्त उच्च ताप व दाब पर होती है तथा मुक्त ऊर्जा अनियन्त्रित होती है।
UP Board Solutions for Class 12 Physics Chapter 13 Nuclei

We hope the UP Board Solutions for Class 12 Physics Chapter 13 Nuclei (नाभिक) help you. If you have any query regarding UP Board Solutions for Class 12 Physics Chapter 13 Nuclei (नाभिक), drop a comment below and we will get back to you at the earliest.

UPSEE Preparation | Tips, Tricks & Best Preparation Books for UPSEE

UPSEE Preparation is the first step to crack in the UPSEE Entrance Exam. UPSEE Entrance Exam is supervised by the Uttar Pradesh Technical University formally known as Dr. A.P.J Abdul Kalam Technical University. It is also known as Uttar Pradesh State Entrance Examination (UPSEE). Only those candidates who meet the declared cutoff will be included in the merit list of UPSEE 2018. This entrance exam is conducted for admission in undergraduate & postgraduate programmes in various field such as engineering, management, etc. As per the UPSEE Exam Pattern, the UPSEE 2019 exam will be conducted offline mode.

Candidates will have to enter the responses on an OMR sheet, using a black or blue ballpoint pen. Questions will be set in both English and Hindi, for all engineering papers except for B.Arch.UPSEE exam is expected to be conducted by April 2019. With the time in hand, you have to start your preparation with sufficient knowledge of UPSEE Syllabus and UPSEE Exam pattern. Today we will be discussing UPSEE Preparation Plan for UPSEE  2019 exam to help you score better in all sections.

UPSEE Exam Pattern

Subject Number of Questions
Paper – 1Physics, Chemistry and Mathematics 50 objective-type questions each of Physics, Chemistry and Mathematics for a total of 150 questions
Paper – 2Physics, Chemistry and Biology 50 objective-type questions each of Physics, Chemistry and Biology
Paper – 3AG -I, AG-II and AG -III 50 objective-type questions each of AG-I, AG-II and AG-III with a total of 150 questions.
Paper – 4Aptitude Test for Architecture & Design Part-A: Mathematics and Aesthetic Sensitivity Part–B: Drawing Aptitude 50 objective-type questions each of Mathematics and Aesthetic Sensitivity with a total of 100 questions and Two questions to test drawing aptitude.

We have mentioned below some important topics for each subject.

UPSEE Preparation | Physics

We are providing the easy but important Topics in Physics for UPSEE Preparation.

  1. Wave Motion
  2. Heat & Thermodynamics
  3. Motion in One Dimension and Solids & Semiconductor devices
  4. Electrostatics
  5. Magnetic Effect of Current & Magnetism
  6. Ray Optics
  7. Rotational Motion

UPSEE Preparation | Physics Exam Study Material

We are providing Study material in Physics for UPSEE Preparation.

  • Class XI and XII UP Board Physics textbook
  • HC VERMA Volume 1 and 2
  • Solved Papers by Arihant Publication
  • Fundamental Physics by Halliday, Resnick, and Walker
  • MCQ Physics by D.Mukerjee for conceptual questions in Physics.

Physics is an important and tricky subject to crack in UPSEE Preparation. Go through the NCERT books for Physics. NCERT books cover all the topics in the syllabus of the exam. However, the physics chapters require comparatively less effort and time to understand completely. Make a complete list of derivations, formulae, and experiments in your syllabus and keep that list it will be handy later during the revision. Revise all the concepts regularly. Particularly in the case of Physics, one finds that topics like Semiconductors, Interference and Waves have some extra theory that should be prepared separately.

UPSEE Preparation | Chemistry

We are providing the easy but important Topics in Chemistry for UPSEE Preparation.

  1. Aldehyde Ketone
  2. Alcohol Phenol Ether and Solutions
  3. Alkanes, Alkenes & Alkynes
  4. General Organic Chemistry
  5. Ionic Equilibrium
  6. s-block elements
  7. p-block elements
  8. Chemical Bonding

UPSEE Preparation | Chemistry Exam Study Material

  • Class XI and XII UP Board Chemistry textbook
  • Numerical Chemistry by R.C. Mukherjee
  • P. Bahadur for Physical Chemistry
  • Organic and Inorganic Chemistry by OP Tondon
  • Pradeep Objective Chemistry
  • Solved Papers by Arihant Publication

Chemistry is one of the easiest subjects if you study it with full concentration and consistency. Learning Inorganic Chemistry equations and reactions by heart can prove to be really helpful. Direct questions based on equations and reactions are bound to be asked, and this to be something that you will continue to remember in your mind will help you save a lot of time during the exam. It is better that, while preparation, you maintain a handbook that contains all the formulae and equations. Most importantly, don’t forget to take mock test/sample papers regularly to improve your time management. It will give you the extra needed mileage to successfully clear competitive exam.

UPSEE Preparation | Mathematics

We are providing the easy but important Topics in Mathematics for UPSEE Preparation.

  1. Vectors, Probability
  2. Theory of Equation
  3. Definite Integration
  4. Matrices Determinants
  5. Dynamics, Complex Numbers

UPSEE Preparation | Mathematics Exam Study Material

We are providing the study material in Mathematics for UPSEE Preparation.

Class XI and XII UP Board Mathematics textbook
Class XI and XII Mathematics textbook by R.D. Sharma

Mathematics exam has been found to be lengthy many a time. Many challenging integration problems can be solved surprisingly quickly by simply knowing the right technique to apply. While finding the right technique can be a matter of ingenuity, there are a dozen or so techniques that permit a more comprehensive approach to solving definite integrals. General Solution for Trigonometric equation is bring the equation in one of the standard forms. This can be done by using factorization formula (i.e. to convert from addition to multiplication). If an equation is asked then substitute the values in the option in the equation . Use Trial and Error Method / Elimination method. For co-ordinate geometry , draw graphs according to equations given and predict the answer. For matrices Do adjoint first or transpose/ square/ other operation first , the answer is same. Try to use the options for finding the answer, rather than solving the entire sum. Use properties of determinants to simplify a given matrix. It is important that you improve your speed-solving skills. Solve as many questions as possible before the exam, and make sure to progressively enhance your speed by timing the working time for each problem.

UPSEE Preparation | Biology

We are providing the important Chapters in Biology for UPSEE Preparation.

  1. Origin of life
  2. Organic evolution
  3. Mechanism of orgamic evolution
  4. Human genetics and eugenic
  5. Applied biology
  6. Plant cell
  7. Ecology
  8. Ecosystem
  9. Genetics
  10. Soil

UPSEE Preparation | Biology Exam Study Material

We are providing the Biology study material for UPSEE Preparation.

  • Class XI and XII UP Board Biology textbook
  • Dinesh Objective Biology
  • Modules of Aakash institutes are really good for UPSEE Biology.
  • Previous years questions from AIPMT, UPSEE, and other Medical Entrance Exams

UPSEE Preparation | B.Arch Exam Study Material

A complete self-study guide by P. K. Mishra

Important tips for UPSEE Preparation Plan

  1. Notes
  2. Make a proper Time Table
  3. Seek Guidance
  4. Practice Mock tests
  5. Time management
  6. Previous Year Question papers
  7. Revision
  8. Negative Marking

1. UPSEE Preparation | Notes

Making short notes has always been a smart way to study and has always helped in revising quickly. These notes can be in the form of flash cards or micro note. Whenever you come across with a new formula, note down in this notes and also to revise these at end of each day. It is very important that with each covered topic and chapter you make small notes or a comprehensive list of formulas which will come in handy at the time of revision. This will require you to be regular with your work but will surely make things easy at the time of revision.

2. UPSEE Preparation | Make a proper Time Table

Aspirants in order to make their UPSEE Preparation more organized and disciplines should prepare a time-table. The first and most prominent is that you make a timetable and stick to it. Make a time-table with both short-term and long-term goals that would help you in timely UPSEE Preparation for the exam. The key point here is to make it completely sure that you remember all the things that you’ve prepared. Since you are preparing for entrance exams you will be required to put in six to eight hours of study time, followed by a 15-20 minute break. Take frequent breaks in between studies so that you are fresh every time you get back to your study routine.

3.UPSEE Preparation | Seek Guidance

In order to save valuable time and attempts, students should seek quality guidance from the best online/offline coaching available. They will provide coaching in all subjects of the UPSEE Exam.
To know which books to read, coaching to join and what strategy to adopt for UPSEE Preparation. It is necessary that you clear your doubts at regular intervals and don’t prolong things for long. Getting into a good coaching class is nothing to be ashamed off.

4.UPSEE Preparation | Practice Mock tests

Mock Tests plays an important role in UPSEE Preparation. Mock tests are trial exams that students take before appearing for the final exam so that they can assess their level of preparation. Mock tests are important because of the practice they provide. Students can appear for series of mock tests and can track their scores in these tests. Furthermore, they can improve their performance to get an extra edge in actual exams. Practice mock test to boost your UPSEE preparations. By practicing mock test, analyze your performance, time management as well as weak points or subjects. Find out your weak points and work on them. Practice, practice and practice. There is no shortcut.

5. UPSEE Preparation | Time management

Manage your time in such a way that you are able to go through all the questions at least once in the exam. Divide the available time equally among all subjects. The reason behind it is there are many questions which are deliberately designed to be complex and end up grabbing the lion’s share of time. A good time management strategy helps you identify questions which are easier and hence, can be solved in less time.

6. UPSEE Preparation| Previous Year Question papers

Previous Year Question papers are the most authentic source of information for exam pattern. Solving these papers give some kind of self-evaluation about the speed and time management. It also helps to gain confidence. It helps us to achieve an idea of the latest exam pattern plus important questions, and figure out how much time one needs to spend on each topic.

7. UPSEE Preparation | Revision

As per the latest UPSEE Syllabus exam questions will be based on State Board of Secondary and higher Secondary education. Preparation is only successful if it gives you result. Result is possibly only when you have a solid and concrete plan. Utilize every resources well. Do not pick up new topics in the last few days. It might leave you clueless. When it comes to UPSEE, more than anything it is essential that you have a clear idea of the formulas and concepts rather than rote learning of things for the papers. While you might require it for memorizing formulas it is important that for other stuff you make sure you clear your basis and concepts before moving on. Last fifteen days before the examination should be used only for revision. At the time of revision you should be more focused on the main exam and refreshing topics. Practice all the topics during the time of revision. The key point here is to make it completely sure that you remember all the things that you’ve prepared.

UPSEE Preparation | Tips During the Exam

1. If you find any particular question difficult, make sure that you don’t waste your time trying to solve it. Instead, you should move to the next question and if time permits come back to this question later.
2. One thing that is crucial is that you have to clear the sectional cut-off of each section an also the overall cut-off.
3. So, if in the Exam, you find any particular section a bit challenging, attempt the minimum number of questions that are required to clear the sectional cut-off of the section.
4. Sometimes, the questions can be very tricky. We advice you to read them very carefully before answering.
5. In the Exam, avoid using any shortcut that you are not completely sure about.
6. Avoid Guesswork in the Exam.

UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements

UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements (तत्त्वों के निष्कर्षण के सिद्धान्त एवं प्रक्रम) are part of UP Board Solutions for Class 12 Chemistry. Here we have given UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements (तत्त्वों के निष्कर्षण के सिद्धान्त एवं प्रक्रम).

Board UP Board
Textbook NCERT
Class Class 12
Subject Chemistry
Chapter Chapter 6
Chapter Name General Principles and Processes of Isolation of Elements
Number of Questions Solved 81
Category UP Board Solutions

UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements (तत्त्वों के निष्कर्षण के सिद्धान्त एवं प्रक्रम)

अभ्यास के अन्तर्गत दिए गए प्रश्नोत्तर

प्रश्न 1.
सारणी 6.1 (पाठ्यपुस्तक) में दर्शाए गए अयस्कों में से कौन-से चुम्बकीय पृथक्करण विधि द्वारा सान्द्रित किए जा सकते हैं?
उत्तर
वे अयस्क जिनमें कम-से-कम एक घटक (अशुद्धि या वास्तविक अयस्क) चुम्बकीय होता है, उन्हें चुम्बकीय पृथक्करण विधि द्वारा सान्द्रित किया जा सकता है; जैसे- हेमेटाइट (Fe2O3), मैग्नेटाइट (Fe3O4), सिडेराइट (FeCO3) तथा आयरन पाइराइट (FeS2) को चुम्बकीय पृथक्करण विधि द्वारा सान्द्रित किया जा सकता है।

प्रश्न 2.
ऐलुमिनियम के निष्कर्षण में निक्षालन का क्या महत्त्व है?
उत्तर
ऐलुमिनियम के निष्कर्षण में निक्षालन के उपयोग से बॉक्साइट अयस्क से अशुद्धियाँ जैसे SiO2, Fe2O3 आदि को हटाया जा सकता है तथा शुद्ध ऐलुमिना प्राप्त किया जा सकता है।

प्रश्न 3.
अभिक्रिया
Cr2O3 + 2 Al → Al2O3 + 2Cr  (ΔfG = – 421 kJ)
के गिब्ज ऊर्जा मान से लगता है कि अभिक्रिया ऊष्मागतिकी के अनुसार सम्भव है, पर यह कक्ष ताप पर सम्पन्न क्यों नहीं होती ?
उत्तर
ऊष्मागतिकीय रूप से सम्भव अभिक्रियाओं के लिए भी सक्रियण ऊर्जा की निश्चित मात्रा की आवश्यकता होती है, अतः दी गई अभिक्रिया को सम्पन्न करने के लिए अतिरिक्त ऊष्मा की आवश्यकता
होगी।

प्रश्न 4.
क्या यह सत्य है कि कुछ विशिष्ट परिस्थितियों में मैग्नीशियम, SiO2 को अपचयित कर सकता है और Si, MgO को? वे परिस्थितियाँ कौन-सी हैं?
उत्तर
1600 K (सिलिकन का गलनांक) से कम ताप पर, SiO2 के निर्माण के लिए ΔG वक्र, MgO के ΔG वक्र से ऊपर स्थित होता है; अत: 1600 K से कम ताप पर Mg, SiO2 को Si में अपचयित कर सकता है। दूसरी ओर 1600 K से अधिक ताप पर MgO के लिए ΔG वक्र, SiO2 के ΔG वक्र से ऊपर स्थित होता है; अत: 1600 K से अधिक ताप पर Si, MgO को Mg में अपचयित कर सकता है।

अतिरिक्त अभ्यास

प्रश्न 1.
कॉपर का निष्कर्षण हाइड्रोधातुकर्म द्वारा किया जाता है, परन्तु जिंक का नहीं। व्याख्या कीजिए।
उत्तर
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 1
से अधिक कियाशील होता है। कॉपर आयनों के विलयन से Cu2+ आयनों को Zn के द्वारा आसानी से प्रतिस्थापित किया जा सकता है।
Zn(s) + Cu2+ (aq) → Zn2+ (aq) + Cu (s)
इस प्रकार, कॉपर को हाइड्रोधातुकर्म के द्वारा निष्कर्षित किया जा सकता है। परन्तु, जिंक को अधिक क्रियाशील होने के कारण, Zn2+ आयन युक्त विलयन से सरलता से विस्थापित नहीं किया जा सकता है। इस प्रकार, कॉपर को हाइड्रोधातुकर्म के द्वारा निष्कर्षित किया जा सकता है। परन्तु, जिंक को अधिक क्रियाशील होने के कारण, Zn2+ आयन युक्त विलयन से सरलता से विस्थापित नहीं किया जा सकता है। इसका कारण यह है कि जिंक से अधिक क्रियाशील धातु; जैसे-ऐलुमिनियम, मैग्नीशियम, कैल्सियम इत्यादि जल से क्रिया करती हैं इसलिए, जिंक को हाइड्रोधातुकर्म के द्वारा निष्कर्षित नहीं किया जा सकता है।

प्रश्न 2.
फेन प्लवन विधि में अवनमक की क्या भूमिका है?
उत्तर
फेन प्लवन विधि में अवनमक का मुख्य कार्य संकरता के द्वारा अयस्क के अवयवों में से किसी एक को फेन बनाने से रोकना है। जैसे, NaCN का प्रयोग अवनमक के रूप में PbS से ZnS अयस्क को पृथक् करने के लिए किया जाता है। यह ZnS के साथ संकर यौगिक बनाता है तथा इसको फेन बनाने से रोकता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 2
इस प्रकार केवल PbS ही फेन बनाने के लिए उपलब्ध होता है तथा इसे ZnS से सरलता से पृथक् किया जा सकता है।

प्रश्न 3.
अपचयन द्वारा ऑक्साइड अयस्कों की अपेक्षा पाइराइट से ताँबे का निष्कर्षण अधिक कठिन क्यों है?
उत्तर
पायराइट अयस्क में, कॉपर Cu2S के रूप में विद्यमान रहता है। Cu2S के निर्माण की मानक मुक्त ऊर्जा (Δf G), CS2 से अधिक होती है, जो कि एक ऊष्माशोषी यौगिक है। इसलिए, कार्बन या H2 का प्रयोग Cu2S को Cu धातु में अपचयित करने के लिए नहीं किया जा सकता है। इसके विपरीत Cu2O के Δf G का मान CO, से बहुत कम होता है। इसलिए, Cu2O को कार्बन के द्वारा Cu धातु में सरलता से अपचयित किया जा सकता है।
Cu2O (s) + C (s) → 2Cu(s) + CO (g)
यही कारण है कि पायराइट से Cu का निष्कर्षण इसके ऑक्साइड के अपचयन द्वारा अधिक कठिन है।

प्रश्न 4.
व्याख्या कीजिए-

  1. मण्डल परिष्करण,
  2. स्तम्भ वर्णलेखिकी।

उत्तर
1. मण्डल परिष्करण (Zone refining) – यह विधि इस सिद्धान्त पर आधारित है कि अशुद्धियों की विलेयता धातु की ठोस अवस्था की अपेक्षा गलित अवस्था में अधिक होती है। अशुद्ध धातु की छड़ के एक किनारे पर एक वृत्ताकार गतिशील तापक लगा रहता है (चित्र-1)। इसकी सहायता से अशुद्ध धातु को गर्म किया जाता है। तापक जैसे ही आगे की ओर बढ़ता है, गलित से शुद्ध धातु क्रिस्टलित हो जाती है तथा अशुद्धियाँ संलग्न गलितं मण्डल में चली जाती हैं। इस क्रिया को कई बार दोहराया जाता है तथा तापक को एक ही दिशा में बार-बार चलाते हैं। अशुद्धियाँ छड़ के एक किनारे पर एकत्रित हो जाती हैं। इसे काटकर अलग कर लिया जाता है। यह विधि मुख्य रूप से अतिउच्च शुद्धता वाले अर्द्धचालकों जैसे जर्मेनियम, सिलिकन, बोरॉन, गैलियम एवं इण्डियम तथा अन्य अतिशुद्ध धातुओं को प्राप्त करने के लिए बहुत उपयोगी है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 3

2. स्तम्भ वर्णलेखिकी (Column chromatography) – यह विधि इस सिद्धान्त पर आधारित है। कि अधिशोषक पर मिश्रण के विभिन्न घटकों का अधिशोषण अलग-अलग होता है। मिश्रण को द्रव या गैसीय माध्यम में रखा जाता है जो कि अधिशोषक में से गुजरता है। स्तम्भ में विभिन्न घटक भिन्न-भिन्न स्तरों पर अधिशोषित हो जाते हैं, बाद में अधिशोषित घटक उपयुक्त विलायकों (निक्षालक) द्वारा निक्षालित कर लिए जाते हैं। गतिशील माध्यम की भौतिक अवस्था, अधिशोषक पदार्थ की प्रकृति एवं गतिशील माध्यम के गमन के प्रक्रम पर निर्भर होने के कारण इसे ‘स्तम्भ वर्णलेखिकी‘ नाम दिया गया है। इस प्रकार की एक विधि में काँच की नली में Al2O3 का एक स्तम्भ बनाया जाता है तथा गतिशील माध्यम जिसमें अवयवों का विलयन उपस्थित होता है, द्रव प्रावस्था में होता है। यह स्तम्भ वर्णलेखिकी का एक उदाहरण है।

यह विधि सूक्ष्म मात्रा में पाए जाने वाले तत्वों के शुद्धिकरण और शुद्ध किए जाने वाले तत्व तथा अशुद्धियों के रासायनिक गुणों में अधिक भिन्नता न होने की स्थिति में शुद्धिकरण के लिए अत्यधिक उपयोगी होती है। स्तम्भ वर्णलेखिकी में प्रयुक्त प्रक्रम को चित्र-2 में दर्शाया गया है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 4

प्रश्न 5.
673 K ताप पर C तथा CO में से कौन-सा अच्छा अपचायक है?
उत्तर
673 K ताप पर C एवं CO में से CO एक अच्छा अपचायक है। इसको निम्न प्रकार समझाया जा सकता है –
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 5
एलिंघम चित्र (चित्र 3) में, C, CO2 वक्र लगभग क्षैतिज है, जबकि CO, CO2 वक्र उर्ध्वगामी हैं तथा दोनों वक्र 673 K पर एक-दूसरे को काटते हैं। C (s) + O2 (g) → CO2 (g) ऊर्जा की दृष्टि से कम सम्भाव्य है क्योंकि इसकी ΔfG का मान अभिक्रिया 2CO (g) + O2 (g) → CO2 (g) की तुलना में कम ऋणात्मक होता है। इसलिए 673 K से नीचे CO एक अधिक अच्छे अपचायक के रूप में कार्य करता है।

प्रश्न 6.
कॉपर के विद्युत-अपघटन शोधन में ऐनोड पंक में उपस्थित सामान्य तत्वों के नाम दीजिए। वे वहाँ कैसे उपस्थित होते हैं?
उत्तर
कॉपर के वैद्युत शोधन में ऐनोड मड में उपस्थित सामान्य तत्त्व सेलेनिमय, टेलुरियम, सिल्वर, गोल्ड आदि हैं। ये तत्त्व कॉपर से कम क्रियाशील होते हैं तथा वैद्युत प्रक्रिया में अप्रभावित रहते हैं।

प्रश्न 7.
आयरन (लोहे) के निष्कर्षण के दौरान वात्या भट्टी के विभिन्न क्षेत्रों में होने वाली अभिक्रियाओं को लिखिए।
उत्तर
आयरन के ऑक्साइड अयस्कों को निस्तापन अथवा भर्जन से सान्द्रित करके, लाइमस्टोन तथा कोक के साथ मिश्रित करके वात्या भट्टी के हॉपर में डाला जाता है। वात्या भट्टी में विभिन्न ताप-परासों में आयरन ऑक्साइड का अपचयन होता है। वात्या भट्टी में होने वाली अभिक्रियाएँ निम्नलिखित हैं –
500 – 800 K पर (वात्या भट्टी में निम्न ताप परिसर में)

  • 3Fe2O3 + CO → 2 Fe3O4 + CO2 ↑
  • Fe3O4 + 4 CO → 3 Fe ↓ + 4CO2
  • Fe2O3 + CO → 2 FeO + CO2

900 – 1500 K पर (वात्या भट्टी में उच्च ताप-परिसर में)

  • C + CO2 → 2 CO ↑
  • FeO + CO → Fe + CO2

चूना पत्थर (लाइमस्टोन) भी CaO में अपघटित हो जाता है जो अयस्क की सिलिकेट अशुद्धि को धातुमल के रूप में हटा देता है। धातुमल (slag) गलित अवस्था में होता है तथा आयरन से पृथक्कृत हो जाता है।

प्रश्न 8.
जिंक ब्लेण्ड से जिंक के निष्कर्षण में होने वाली रासायनिक अभिक्रियाओं को लिखिए।
उत्तर
जिंक ब्लेण्ड से जिंक के निष्कर्षण में होने वाली अभिक्रियाएँ निम्नलिखित हैं –

  1. सान्द्रण (Concentration) – अयस्क को पीसकर फेन प्लवन प्रक्रम द्वारा इसको सान्द्रण किया जाता है।
  2. भर्जन (Roasting) – सान्द्रित अयस्क का लगभग 1200 K ताप पर वायु की अधिकता में भर्जन किया जाता है जिससे जिंक ऑक्साईड (ZnO) प्राप्त होता है।
    UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 6
  3. अपचयन (Reduction) – प्राप्त जिंक ऑक्साइड को चूर्णित कोक के साथ मिलाकर एक फायर क्ले रिटॉर्ट में 1673 K तक गर्म किया जाता है, परिणामस्वरूप यह जिंक धातु में अपचयित हो जाता है।
    ZnO + C [latex]\underrightarrow { 1673K }[/latex] Zn ↓ + CO ↑
    1673 K पर जिंक धातु वाष्पीकृत होकर (क्वथनांक 1180 K) आसवित हो जाती है।
  4. विद्युत-अपघटनी शोधन (Electrolytic refining) – अशुद्ध जिंक ऐनोड बनाता है तथा कैथोड शुद्ध जिंक की शीट से बना होता है। विद्युत-अपघट्य तनु H2SO4 से अम्लीकृत ZnSO4 विलयन होता है। विद्युत धारा प्रवाहित करने पर शुद्ध Zn कैथोड पर संगृहीत हो जाता है।

प्रश्न 9.
कॉपर के धातुकर्म में सिलिका की भूमिका समझाइए।
उत्तर
भर्जन के दौरान कॉपर पाइराइट FeO तथा Cu2O के मिश्रण में परिवर्तित हो जाता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 7
FeO (क्षारीय) को हटाने के लिए प्रगलन के दौरान एक अम्लीय गालक सिलिका मिलाया जाता है। FeO, SiO2 से संयोग करके फेरस सिलिकेट (FeSiO3) धातुमल बनाता है जो गलित अवस्था में प्राप्त मैट पर तैरने लगता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 8
अत: कॉपर के निष्कर्षण में सिलिका की भूमिका ऑक्साइड को धातुमल के रूप में हटाने की होती है।

प्रश्न 10.
‘वर्णलेखिकी पद का क्या अर्थ है?
उत्तर
वर्णलेखिकी (क्रोमैटोग्राफी) ग्रीक भाषा में क्रोमा का अर्थ रंग तथा ग्राफी का अर्थ लिखना होता है। शब्द का प्रयोग सर्वप्रथम 1906 में आईवेट (Iswett) के द्वारा पौधों से रंगीन पदार्थों को पृथक् करने के लिए किया गया था। अब इस शब्द का मूल अर्थ अस्तित्वहीन है क्योंकि आजकल इस तकनीक का प्रयोग व्यापक रूप में पृथक्करण, शोधन तथा रंगीन या रंगहीन मिश्रण के अवयवों के लक्षणीकरण (characterisation) तत्त्वों के निर्धारण में किया जाता है। यह कार्बनिक यौगिक के मिश्रण के अवयवों का दो प्रावस्थाओं के बीच वितरण के सिद्धान्त पर आधारित है। इन दोनों प्रावस्थाओं में एक स्थिर होती है, जो कि ठोस या द्रव हो सकती है। इसे स्थिर प्रावस्था कहते हैं। दूसरी प्रावस्था को गतिशील प्रावस्था कहते हैं। यह गतिशील प्रकृति की होती है और द्रव या गैस की बनी होती है।

प्रश्न 11.
वर्णलेखिकी में स्थिर प्रावस्था के चयन में क्या मापदण्ड अपनाए जाते हैं?
उत्तर
स्थिर प्रावस्था इस प्रकार के पदार्थ की बनी होनी चाहिए, जो कि अशुद्धियों को शुद्ध किये जाने वाले तत्त्व की अपेक्षा अधिक प्रबलता से अधिशोषित करने में सक्षम हो। इससे तत्त्व का निर्गमन (elution) सुगमता से हो जाता है।

प्रश्न 12.
निकिल-शोधन की विधि समझाइए।
उत्तर
निकिल-शोधन का मॉन्ड प्रक्रम (Mond process of nickel purification) – इस प्रक्रम में निकिल (अशुद्ध) को कार्बन मोनोक्साइड के प्रवाह में गर्म करने से वाष्पशील निकिल टेट्रोकार्बोनिल संकुल बन जाता है –
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 9
इस कार्बोनिल को और अधिक ताप पर गर्म करते हैं जिससे यह विघटित होकर शुद्ध धातु दे देता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 10

प्रश्न 13.
सिलिका युक्त बॉक्साइट अयस्क में से सिलिका को ऐलुमिना से कैसे अलग करते हैं? यदि कोई समीकरण हो तो दीजिए।
उत्तर
शुद्ध ऐलुमिना को बॉक्साइट अयस्क से बायर प्रक्रम द्वारा पृथक्कृत किया जा सकता है। सिलिका युक्त बॉक्साईट अयस्क को NaOH के सान्द्र विलयन के साथ 473 – 523 K ताप पर तथा 35 – 36 bar दाब पर गर्म करते हैं। इससे ऐलुमिना, सोडियम ऐलुमिनेट के रूप में तथा सिलिका, सोडियम सिलिकेट के रूप में घुल जाता है तथा अशुद्धियाँ अवशेष के रूप में रह जाती हैं।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 11
परिणामी विलयन को छानकर अविलेय अशुद्धियों (यदि कोई हो) को हटा दिया जाता है तथा इसे CO2 गैस प्रवाहित करके उदासीन कर दिया जाता है। इस अवस्था पर विलयन को ताजा बने हुए जलयोजित Al2O3 के नमूने से बीजारोपित किया जाता है जो अवक्षेपण को प्रेरित करता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 12
सोडियम सिलिकेट विलयन में शेष रह जाता है तथा जलयोजित ऐलुमिना को छानकर, सुखाकर तथा गर्म करके पुनः शुद्ध Al2O3 प्राप्त कर लिया जाता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 13

प्रश्न 14.
उदाहरण देते हुए भर्जन व निस्तापन में अन्तर बताइए। (2009, 17)
उत्तर
निस्तापन में सान्द्रित अयस्क को उसके गलनांक से नीचे वायु की सीमित मात्रा में गर्म किया जाता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 14
भर्जन में अयस्क को वायु की अधिकता में तीव्रता से गर्म करते हैं। इसके फलस्वरूप P, As, S आदि की अशुद्धियाँ ऑक्सीकृत हो जाती हैं तथा सल्फाइड अयस्क धातु ऑक्साइड में परिवर्तित हो जाता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 15

प्रश्न 15.
ढलवाँ लोही कच्चे लोहे से किस प्रकार भिन्न होता है?
उत्तर
वात्या भट्टी से प्राप्त अशुद्ध आयरन को कच्चा लोहा कहा जाता है। इसमें S, P, Si, Mn आदि की अशुद्धियों के साथ लगभग 4% कार्बन होता है। ढलवां लोहे को बनाने के लिए कच्चे लोहे को गर्म वायु में स्क्रैप आयरन तथा कोक के साथ पिघलाया जाता है। इसमें कार्बन की मात्रा कम (लगभग 3%) पायी जाती है।

प्रश्न 16.
अयस्कों तथा खनिजों में अन्तर स्पष्ट कीजिए।
उत्तर
प्राकृतिक रूप से उपस्थित रासायनिक पदार्थ, जिनके रूप में धातुएँ अशुद्धियों के साथ भूपर्पटी में उपस्थित होती हैं, खनिज (minerals) कहलाते हैं। वे खनिज, जिनसे धातुओं का निष्कर्षण सरल तथा आर्थिक रूप से लाभदायक हो, अयस्क कहलाते हैं। अतः सभी अयस्क खनिज होते हैं, परन्तु सभी खनिज अयस्क नहीं होते हैं। उदाहरणार्थ– भूपर्पटी में लोहा ऑक्साइडों, कार्बोनेटों तथा सल्फाइडों के रूप में विद्यमान होता है। लोहे के इन खनिजों में से निष्कर्षण के लिए लोहे के ऑक्साइडों को चुना जाता है, इसलिए लोहे के ऑक्साइड, लोहे के अयस्क हैं। इसी प्रकार भूपर्पटी में ऐलुमिनियम दो खनिजों के रूप में पाया जाता है- बॉक्साइट (Al2O3 . xH2O) तथा क्ले (Al2O3 . 2SiO2 . 2H2O)। इन दोनों खनिजों में से बॉक्साइट से Al का निष्कर्षण सरलतापूर्वक तथा आर्थिक रूप से लाभदायक रूप में किया जा सकता है, इसलिए बॉक्साइट ऐलुमिनियम का अयस्क है।

प्रश्न 17.
कॉपर मैट को सिलिका की परत चढ़े हुए परिवर्तकों में क्यों रखा जाता है?
उत्तर
सिलिका युक्त परिवर्तक (बेसेमर परिवर्तक) में मैट में उपस्थित शेष FeS को FeO में ऑक्सीकृत करने के लिए रखा जाता है जो सिलिका के साथ संयोग कर संगलित धातुमल बनाता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 16
जब सम्पूर्ण लोहे को धातुमल के रूप में पृथक् कर लिया जाता है, तब कुछ Cu2S ऑक्सीकरण के फलस्वरूप Cu2O बनाता है जो अधिक Cu2S के साथ अभिक्रिया करके कॉपर धातु बनाता है।
2Cu2S + 3O2 → 2Cu2O + 2SO2 ↑
2Cu2O + Cu2S → 6Cu ↓ + SO2
अत: कॉपर मैट को सिलिका की परत चढ़े हुए परिवर्तक में मैट में उपस्थित FeS को FeSiO3 धातुमल के रूप में हटाने के लिए भी रखा जाता है।

प्रश्न 18.
ऐलुमिनियम के धातुकर्म में क्रायोलाइट की क्या भूमिका है?
उत्तर
क्रायोलाइट, मिश्रण के संगलन ताप को कम करता है तथा ऐलुमिना की वैद्युत चालकता को बढ़ाता है जो कि वास्तव में विद्युत का अच्छा चालक नहीं होता है।

प्रश्न 19.
निम्न कोटि के कॉपर अयस्कों के लिए निक्षालन क्रिया को कैसे किया जाता है?
उत्तर
निम्न ग्रेड कॉपर अयस्क का निक्षालन वायु या जीवाणुओं की उपस्थिति में अम्ल के साथ क्रिया कर किया जाता है। इस प्रक्रिया में कॉपर Cu2+ आयनों के रूप में विलयन में चला जाता है।
Cu (s) + 2H+ (aq) + 1/2 O2 (g) → Cu2+ (aq) + H2O (l)

प्रश्न 20.
Co का उपयोग करते हुए अपचयन द्वारा जिंक ऑक्साइड से जिंक का निष्कर्षण क्यों नहीं किया जाता?
उत्तर
एलिंघम चित्र में CO, CO2 वक्र Zn, ZnO वक्र के ऊपर स्थित है। यह स्पष्ट करता है कि CO से CO2 बनाने के लिए Δf G का मान Zn से ZnO के निर्माण के मान से कम ऋणात्मक है। इसलिए, यदि CO का अपचायक के रूप में प्रयोग किया जाता है, तो अपचयन में बहुत अधिक ताप की आवश्यकता होगी। यही कारण है कि जिंक को CO अपचायक के प्रयोग द्वारा ZnO से निष्कर्षित नहीं किया जाता है।

प्रश्न 21.
Cr2O3 के विरचन के लिए Δf G का मान – 540 kJ mol-1 है तथा Al2O3 के लिए – 827 kJ mol-1 है। क्या Cr2O3 का अपचयन Al से सम्भव है?
उत्तर
हाँ, Al के द्वारा Cr2O3 का अपचयन सम्भव है। इसको निम्न प्रकार समझा जा सकता है –
इस प्रक्रिया में निहित अभिक्रियाएँ निम्न हैं –
2Al (s) + 3/2 O2 (g) → Al2O3 (s); Δf G  = – 827 kJ mol-1 …(i)
2Cr (s) + 3/2 O2 (g) → Cr2O3 (s) ;  Δf G = – 540 kJ mol-1 …(ii)
समीकरण (ii) में से (i) को घटाने पर
2Al (s) + Cr2O3 (3) → Al2O3 (s) + 2Cr (s);
Δf G = – 827- (-540) = – 287 kJ mol-1
चूँकि संयुक्त रिडॉक्स अभिक्रिया के लिए Δf G– का मान ऋणात्मक है, इसलिए प्रक्रिया सम्भाव्य है। अर्थात् Al के द्वारा Cr2O3 का अपचयन सम्भव है।

प्रश्न 22.
C व CO में से ZnO के लिए कौन-सा अपचायक अच्छा है?
उत्तर
कार्बन CO से अधिक अच्छा अपचायक है, इसको अग्र प्रकार स्पष्ट किया जा सकता है –
एलिंघम चित्र में, C, CO वक्र Zn, ZnO वक्र से 1120 K से अधिक ताप पर नीचे स्थित तथा C, CO2 वक्र 1323 K से अधिक ताप पर नीचे स्थित है। इस प्रकार, C से CO के लिए Δf G का मान तथा C, CO2 के लिए Δf G के मान क्रमशः 1120 K तथा 1323 K पर C से ZnO के लिए Δf G के मान से कम है जबकि CO, CO2 वक्र Zn, ZnO वक्र से 2273 K पर भी ऊपर है। इसलिए ZnO को C के द्वारा अपचयित किया जा सकता है परन्तु CO के द्वारा नहीं। इसलिए C व CO में से ZnO के अपचयन के लिए C अधिक अच्छा अपचायक है।

प्रश्न 23.
किसी विशेष स्थिति में अपचायक का चयन ऊष्मागतिकी कारकों पर आधारित है। आप इस कथन से कहाँ तक सहमत हैं? अपने मत के समर्थन में दो उदाहरण दीजिए।
उत्तर
किसी निश्चित धात्विक ऑक्साइड का धात्विक अवस्था में अपचयन करने के लिए उचित अपचायक का चयन करने में ऊष्मागतिकी कारक सहायता करता है। इसे निम्नवत् समझा जा सकता है –
एलिंघम आरेख से यह स्पष्ट होता है कि वे धातुएँ, जिनके लिए उनके ऑक्साइडों के निर्माण की मानक मुक्त ऊर्जा अधिक ऋणात्मक होती है, उन धातु ऑक्साइडों को अपचयित कर सकती हैं जिनके लिए उनके सम्बन्धित ऑक्साइडों के निर्माण की मानक मुक्त ऊर्जा कम ऋणात्मक होती है। दूसरे शब्दों में, कोई धातु किसी अन्य धातु के ऑक्साइड को केवल तब अपचयित कर सकती है, जबकि यह एलिंघम आरेख में इस धातु से नीचे स्थित हो। चूंकि संयुक्त रेडॉक्स अभिक्रिया का मानक मुक्त ऊर्जा परिवर्तन ऋणात्मक होगा (जो कि दोनों धातु ऑक्साइडों के Δf G में अन्तर के तुल्य होता है।), अत: Al तथा Zn दोनों FeO को Fe में अपचयित कर सकते हैं, परन्तु Fe, Al2O3 को Al में तथा Zn0 को Zn में अपचयित नहीं कर सकता। इसी प्रकार C, ZnO को Zn में अपचयित कर सकता है, परन्तु CO ऐसा नहीं कर सकता।

प्रश्न 24.
उस विधि का नाम लिखिए जिसमें क्लोरीन सह-उत्पाद के रूप में प्राप्त होती है। क्या होगा यदि NaCl के जलीय विलयन का विद्युत-अपघटन किया जाए?
उत्तर
डाउन की प्रक्रिया में गलित NaCl के वैद्युत-अपघटन के फलस्वरूप सह-उत्पाद के रूप में क्लोरीन प्राप्त होती है।
NaCl (fused) → Na+ + Cl
कैथोड पर : Na+ + e → Na (s)
ऐनोड पर : Cl + e → 1/2 cl2 (g)
जब NaCl के जलीय विलयन का वैद्युत-अपघटन किया जाता है, तो कैथोड पर H2 गैस तथा ऐनोड पर Cl2 गैस प्राप्त होती हैं। NaOH का एक जलीय विलयन सह-उत्पाद के रूप में प्राप्त है।
NaCl (aq) → Na+ (aq) + Cl (aq)
ऐनोड पर : Cl (aq) + e → 1/2 Cl2 (g)
कैथोड पर : 2H2O (l) + 2e → 2OH (a) + H2 (g)

प्रश्न 25.
ऐलुमिनियम के विद्युत-धातुकर्म में ग्रेफाइट छड़ की क्या भूमिका है?
उत्तर
इस प्रक्रिया में ऐलुमिना, क्रायोलाईट तथा फ्लुओरस्पार (CaF2) के गलित मिश्रण का विद्युतअपघटन ग्रेफाइट को ऐनोड के रूप में तथा ग्रेफाइट की परत चढ़े हुए आयरन को कैथोड के रूप में प्रयुक्त करके किया जाता है। विद्युत-अपघटन करने पर Al कैथोड पर मुक्त होती है, जबकि ऐनोड पर CO तथा CO2 मुक्त होती हैं।
कैथोड पर : Al3+ (गलित) → Al (l)
ऐनोड पर : C (s) + O2- (गलित) → CO (g) + 2e
C (s) + 2O2- (गलित) → CO2 (g) + 4e

यदि किसी अन्य धातु को ग्रेफाइट के स्थान पर प्रयुक्त किया जाता है, तब मुक्त O2 न केवल इलेक्ट्रोड की धातु को ऑक्सीकृत ही करेगी, बल्कि कैथोड पर मुक्त Al की कुछ मात्रा को पुनः Al2O3 में परिवर्तित कर देगी। चूँकि ग्रेफाइट अन्य किसी धातु से सस्ता होता है, इसलिए इसे ऐनोड के रूप में प्रयुक्त किया जाता है। इस प्रकार ऐलुमिनियम के निष्कर्षण में ग्रेफाइट छड़ की भूमिका ऐनोड पर मुक्त O2 को संरक्षित करना है जिससे यह मुक्त होने वाले Al की कुछ मात्रा को पुन: Al2O3 में परिवर्तित न कर दे।

प्रश्न 26.
निम्नलिखित विधियों द्वारा धातुओं के शोधन के सिद्धान्तों की रूपरेखा दीजिए –

  1. मण्डल परिष्करण
  2. विद्युत-अपघटनी परिष्करण
  3. वाष्प प्रावस्था परिष्करण।

उत्तर
1. मण्डल परिष्करण (Zone refining) – इसके लिए अभ्यास-प्रश्न संख्या 4(i) देखिए।

2. विद्युत-अपघटनी परिष्करण (Electrolytic Refining) – इस विधि में अशुद्ध धातु को ऐनोड बनाते हैं। उसी धातु की शुद्ध धातु-पट्टी को कैथोड के रूप में प्रयुक्त करते हैं। इन्हें एक उपयुक्त विद्युत-अपघट्य का विलयन विश्लेषित्र में रखते हैं जिसमें उसी धातु का लवण घुला रहता है। अधिक क्षारकीय धातु विलयन में रहती है तथा कम क्षारकीय धातुएँ ऐनोड पंक (anode mud) में चली जाती हैं। इस प्रक्रम की व्याख्या, विद्युत विभव की धारणा, अधिविभव तथा गिब्ज ऊर्जा के द्वारा (उपयोग) भी की जा सकती है। ये अभिक्रियाएँ निम्नलिखित हैं –
ऐनोड पर : M → Mn+ + ne
कैथोड पर : Mn+ + ne → M
उदाहरण– ताँबे का शोधन विद्युत-अपघटनी विधि के द्वारा किया जाता है। अशुद्ध कॉपर ऐनोड के रूप में तथा शुद्ध कॉपर पत्री कैथोड के रूप में लेते हैं। कॉपर सल्फेट का अम्लीय विलयन विद्युत-अपघट्य होता है तथा विद्युत अपघटन के वास्तविक परिणामस्वरूप शुद्ध कॉपर ऐनोड से कैथोड की तरफ स्थानान्तरित हो जाता है।
ऐनोड पर : Cu → Cu2+ + 2e
कैथोड पर : Cu2+ + 2e → Cu
फफोलेदार कॉपर से अशुद्धियाँ ऐनोड पंक के रूप में जमा होती हैं जिसमें एण्टिमनी, सेलीनियम टेल्यूरियम, चाँदी, सोना तथा प्लैटिनम मुख्य होती हैं। इन तत्वों की पुन: प्राप्ति से शोधन की लागत की क्षतिपूर्ति हो सकती है। जिंक को शोधन भी इसी प्रकार से किया जा सकता है।

3. वाष्प प्रावस्था परिष्करण (Vapour Phase Refining) – इस विधि में धातु को वाष्पशील यौगिक में परिवर्तित करके दूसरे स्थल पर एकत्र कर लेते हैं। इसके बाद इसे विघटित करके शुद्ध धातु प्राप्त कर लेते हैं। इस प्रक्रिया की दो आवश्यकताएँ होती हैं –

  • उपलब्ध अभिकर्मक के साथ धातु वाष्पशील यौगिक बनाती हो तथा
  • वाष्पशील पदार्थ आसानी से विघटित हो सकता हो जिससे धातु आसानी से पुनः प्राप्त की जा सके।

उदाहरणजिर्कोनियम या टाइटेनियम के शोधन के लिए वॉन-आरकैल विधि : यह Zr तथा Ti जैसी कुछ धातुओं से अशुद्धियों की तरह उपस्थित सम्पूर्ण ऑक्सीजन तथा नाईट्रोजन को हटाने में बहुत उपयोगी है। परिष्कृत धातु को निर्वातित पात्र में आयोडीन के साथ गर्म करते हैं। धातु आयोडाइड अधिक सहसंयोजी होने के कारण वाष्पीकृत हो जाता है।
Zr + 2I2 → ZrI4
धातु आयोडाइड को विद्युत धारा द्वारा 1800 K ताप पर गर्म किए गए टंग्स्टन तन्तु पर विघटित किया जाता है। इस प्रकार से शुद्ध धातु तन्तु पर जमा हो जाती है।
ZrI4 → Zr ↓ + 2I2 ↑

प्रश्न 27.
उन परिस्थितियों का अनुमान लगाइए जिनमें Al, MgO को अपचयित कर सकता है।
उत्तर
दोनों अभिक्रियाएँ इस प्रकार हैं –
[latex s=2]\frac { 4 }{ 3 } [/latex] Al + O2 → [latex s=2]\frac { 2 }{ 3 } [/latex] Al2O3 ; ΔG Al, Al2O3 …(i)
2Mg + O2 → 2MgO ; ΔG Mg, MgO
एलिंघम आरेख द्वारा स्पष्टीकरण – कुछ ऑक्साइडों के विरचन में AG° तथा T के एलिंघम आरेख निम्नवत् हैं –
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 17
उपर्युक्त आरेख से स्पष्ट है कि 1665 K से नीचे तापमान पर Al2O3 का ΔG मान MgO की तुलना में कम ऋणात्मक है। अतः जब समीकरण

  • को समीकरण
  • में से घटाया जाता है तो संयुक्त रेडॉक्स अभिक्रियाओं अर्थात् समीकरण
  • का ΔG ऋणात्मक होता है।

2Mg + [latex s=2]\frac { 2 }{ 3 } [/latex] Al2O3 → 2MgO + [latex s=2]\frac { 4 }{ 3 } [/latex] Al ; ΔG = – ve …(iii)
इस प्रकार 1665 K से नीचे तापमान पर Mg, Al2O3 को Al में अपचयित कर सकता है। 1665 K से अधिक तापमान पर Al2O3 का ΔG मान MgO की तुलना में अधिक ऋणात्मक होता है। इसलिए जब समीकरण (ii) को समीकरण (i) में से घटाया जाता है तो संयुक्त रेडॉक्स अभिक्रिया अर्थात् समीकरण (iv) का ΔG ऋणात्मक होता है।
[latex s=2]\frac { 4 }{ 3 } [/latex] Al+ 2 MgO → [latex s=2]\frac { 2 }{ 3 } [/latex] Al2O3 + 2Mg ; ΔG = – Ve …(iv)
अत: 1665 K से अधिक तापमान पर Al, MgO को Mg में अपचयित कर सकता है।

परीक्षोपयोगी प्रश्नोत्तर

बहुविकल्पीय प्रश्न
प्रश्न 1.
निम्नलिखित में से कौन-सा अयस्क नहीं है? (2017)
(i) आयरन पाइराइट
(ii) हॉर्न सिल्वर
(iii) मैलेकाइट
(iv) पिग आयरन
उत्तर
(iv) पिग आयरन

प्रश्न 2.
कौन से अयस्क का सान्द्रण फेल प्लवन विधि द्वारा किया जाता है? (2017)
(i) कार्बोनेट
(ii) सल्फाइड
(iii) ऑक्साइड
(iv) फॉस्फेट
उत्तर
(ii) सल्फाइड

प्रश्न 3.
लौह अयस्कों का सान्द्रण किया जाता है – (2010, 17)
(i) गुरुत्व पृथक्करण विधि द्वारा।
(ii) फेन प्लवन विधि द्वारा
(iii) चुम्बकीय पृथक्करण विधि द्वारा
(iv) अमलगम विधि द्वारा।
उत्तर
(iii) चुम्बकीय पृथक्करण विधि द्वारा

प्रश्न 4.
निम्नलिखित में से कौन क्षारीय गालक नहीं है?
(i) CaCO3
(ii) CaO
(iii) SiO2
(iv) MgO
उत्तर
(iii) SiO2

प्रश्न 5.
वात्या भट्टी में आयरन ऑक्साइड अपचयित होता है – (2009, 18)
(i) SiO2 द्वारा
(ii) C द्वारा
(iii) CO द्वारा
(iv) CaCO3 द्वारा
उत्तर
(iii) CO द्वारा

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.
अयस्क किसे कहते हैं? अयस्क तथा खनिज में क्या अन्तर है? (2009, 12)
उत्तर
खनिज-पृथ्वी में धातु तथा उनके यौगिक जिस रूप में मिलते हैं, वे खनिज कहलाते हैं; जैसे- रॉक साल्ट (rock salt), NaCl आदि।
अयस्क- वे खनिज जिनसे किसी शुद्ध धातु का निष्कर्षण अधिक मात्रा में सुविधापूर्वक व कम व्यय पर किया जा सके, उस धातु के अयस्क कहलाते हैं; जैसे- लोहे का अयस्क हेमेटाइट, Fe2O: 2H2O है। अतः सभी अयस्क खनिज होते हैं, परन्तु सभी खनिज अयस्क नहीं होते हैं।

प्रश्न 2.
ऐलुमिनियम के दो प्रमुख अयस्कों के नाम तथा सूत्र लिखिए। (2012)
उत्तर
ऐलुमिनियम के दो प्रमुख अयस्क इस प्रकार हैं –

  1. बॉक्साइट Al2O3 : 2H2O
  2. क्रायोलाइट Na3AIF6

प्रश्न 3.
ऐलुनाइट अयस्क का संगठन लिखिए। (2012)
उत्तर
K2SO4 : Al2(SO4)3 : 4 Al(OH)3

प्रश्न 4.
कॉपर के दो प्रमुख अयस्कों के नाम तथा सूत्र लिखिए। (2016, 12, 15, 16, 17)
उत्तर
कॉपर के दो प्रमुख अयस्क क्यूप्राइट (Cu2O) व कॉपर पायराइट (CuFeS2) हैं।

प्रश्न 5.
किन्हीं दो सल्फाइड अयस्कों के नाम लिखिए। (2012)
उत्तर

  1. अर्जेण्टाइट (Ag2S)
  2. कैल्कोपायराइट (CuFeS2)

प्रश्न 6.
डायस्पोर तथा केरार्जिराइट किन धातुओं के अयस्क हैं? (2009)
उत्तर

  • डायस्पोर- ऐलुमिनियम;
  • केरार्जिराइट- सिल्वर

प्रश्न 7.
लोहे के प्रमुख अयस्कों के नाम तथा सूत्र लिखिए। (2009, 10, 11, 13, 17)
उत्तर
1, ऑक्साइड अयस्क – लाल हेमेटाइट (Fe2O3 . 2H2O), मैग्नेटाइट (Fe3O4)
2. जलीय ऑक्साइड अयस्क – भूरा हेमेटाइट या लिमोनाइट (Fe2O3 : 3H2O)
3. कार्बोनेट अयस्क – सिडेराइट (FeCO3)
4. सल्फाइड अयस्क – आयरन पाइराइट (FeS2), कॉपर आयरन पाइराइट या कैल्को पाइराइट (CuFeS2)

प्रश्न 8.
ऐजुराइट तथा सिडेराइट अयस्कों का सूत्र लिखिए। (2012)
उत्तर
ऐजुराइट- 2CuCO3 . Cu(OH)2, सिडेराइट (FeCO3)

प्रश्न 9.
आधात्री की व्याख्या कीजिए। (2009)
उत्तर
खनिजों में मिट्टी, कंकड़, पत्थर आदि अनावश्यक पदार्थ अशुद्धियों के रूप में मिले रहते हैं। इन पदार्थों को गैंग या आधात्री कहते हैं।

प्रश्न 10.
फेन प्लवन विधि द्वारा किन अयस्कों का सान्द्रण किया जाता है। इस विधि का वर्णन | कीजिए। (2009, 11, 17)
उत्तर
यह विधि अयस्क तथा आधात्री (gangue) की किसी द्रव से भीगने की प्रवृत्ति पर निर्भर करती है। इस विधि में बारीक पिसे हुए अयस्क को जल तथा तेल के मिश्रण में डालकर वायु प्रवाहित की जाती है। अशुद्ध अयस्क तेल के साथ झाग (फेन) बनाकर ऊपर तैरने लगता है और अपद्रव्य नीचे बैठ जाते हैं। इस विधि में चीड़ का तेल (pine oil) या क्रीओसेट तेल (creosate oil) काम में लाया जाता है। सल्फाइड अयस्कों का सान्द्रण इसी विधि से किया जाता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 18

प्रश्न11.
अयस्कों का सान्द्रण क्यों आवश्यक है? चुम्बकीय पृथक्करण विधि से क्या तात्पर्य है? (2012)
उत्तर
खानों से प्राप्त अयस्कों में मिट्टी, कंकड़, पत्थर आदि मिले होते हैं जिन्हें आधात्री कहते हैं। आधात्री के कारण शुद्ध धातु प्राप्त करने में अवरोध उत्पन्न होता है तथा धन व समय का भी अपव्यय होता है। अत: धातु निष्कर्षण के पूर्व अयस्क से इन अशुद्धियों को दूर किया जाता है जिसे अयस्क का सान्द्रण कहते हैं।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 19
चुम्बकीय पृथक्करण – सान्द्रण की यह विधि पदार्थों के चुम्बकीय तथा अचुम्बकीय गुणों पर निर्भर करती है। किसी अयस्क में उपस्थित चुम्बकीय अशुद्धि को इस विधि के द्वारा पृथक् कर सकते हैं। टिन-स्टोन (SnO2) में कुछ चुम्बकीय पदार्थ; जैसे- Fe3O4 आदि मिला होता है। अयस्क के महीन चूर्ण को दो बेलनों पर लगी पट्टी (belt) पर डालते हैं। इनमें से एक बेलन चुम्बकीय होता है। पट्टी को चलाने पर चुम्बकीय तथा अचुम्बकीय पदार्थ अलग-अलग स्थानों पर एकत्रित होते जाते हैं, जैसा कि चित्र में प्रदर्शित किया गया है। इस विधि में महीन चूर्ण को पट्टी पर डालते रहते हैं तथा पट्टी बेलनों की सहायता से चलती रहती है। विद्युत चुम्बकीय ध्रुवों के प्रभावों के कारण चुम्बकीय पदार्थ उससे दूर पृथक्-पृथक् होते जाते हैं। इस प्रकार से सान्द्रित अयस्क एकत्रित कर लिया जाता है।

प्रश्न 12.
गालक किसे कहते हैं? उदाहरण सहित समझाइए। (2011, 12, 13, 15, 16, 17)
उत्तर
गालक– गालक उस पदार्थ को कहते हैं जो अयस्क में उपस्थित अगलनीय अशुद्धियों के साथ उच्च ताप पर क्रिया करके इनको आसानी से गलाकर पृथक् होने वाले पदार्थों के रूप में दूर कर देते हैं। अशुद्धियों की गालक से क्रिया के फलस्वरूप बने गलनीय पदार्थ को धातुमल कहा जाता है। धातुमल, धातु से हल्का होने के कारण उसके ऊपर एक अलग पर्त के रूप में तैरने लगता है जिसको अलग कर लेते हैं। गालक दो प्रकार के होते हैं –
1. अम्लीय गालक; जैसे- SiO2। यह क्षारीय अशुद्धियों; जैसे- CaO, FeO आदि को दूर करता है।
2. क्षारीय गालक; जैसे- चूने का पत्थर (CaCO3)। यह अम्लीय अशुद्धियों; जैसे- SiO2, P2O5 को दूर करता है।

प्रश्न 13.
अम्लीय गालक क्या है? धातुकर्म में इसकी क्या उपयोगिता है? एक उदाहरण देकर समझाइए।
उत्तर
वे गालक जो क्षारीय अशुद्धियों से क्रिया करके धातुमल बनाते हैं, अम्लीय गालक कहलाते हैं। सिलिका (SiO2) तथा बोरेक्स प्रमुख अम्लीय गालक हैं।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 20

प्रश्न 14.
SiO2 अशुद्धि दूर करने के लिए उपयुक्त गालक लिखिए तथा सम्बन्धित अभिक्रिया लिखिए। (2009)
उत्तर
SiO2 अशुद्धि दूर करने के लिए उसमें क्षारीय गालक CaCO3 लिया जाता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 21

प्रश्न15.
धातुमल किसे कहते हैं? एक उदाहरण से समझाइए। (2009, 12, 13, 15, 16)
उत्तर
अयस्क में कुछ अशुद्धियाँ ऐसी होती हैं जिनका गलनांक बहुत अधिक होता है। गालक इन अशुद्धियों से मिलकर द्रवित पदार्थ बनाते हैं जिसे धातुमल कहते हैं। यह धातु से हल्का होने के कारण ऊपर तैरता रहता है जिसे निथारकर अलग कर दिया जाता है।
अशुद्धि + गालक = धातुमल
उदाहरणार्थ- FeO में SiO2 मिलाने पर FeSiO3 धातुमल प्राप्त होता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 22

प्रश्न 16.
निस्तापन किसे कहते हैं? उदाहरण देकर समझाइए। (2009, 11, 16)
उत्तर
वह क्रिया जिसमें अयस्क को इतना गर्म करते हैं कि वह पिघले नहीं तथा अयस्क से गैसीय पदार्थ या वाष्पशील पदार्थ पृथक् हो जाते हैं, निस्तापन कहलाती है। गैस निकलने पर अयस्क सरन्ध्र (porous) हो जाता है; जैसे- कार्बोनेट अयस्क गर्म होकर ऑक्साइड अयस्क तथा COमें बदल जाता है।
ZnCO3 → ZnO + CO2 ↑

प्रश्न 17.
भर्जन किसे कहते हैं? उदाहरण देकर समझाइए। (2011, 16, 17)
उत्तर
वह क्रिया जिसमें अयस्क को वायु की उपस्थिति में उसके गलनांक से नीचे गर्म किया जाता है, भर्जन कहलाती है। इस क्रिया में S, As आदि वाष्पशील अशुद्धियाँ ऑक्साइडों के रूप में पृथक् हो जाती हैं। और सल्फाइड अयस्क ऑक्साइड में बदल जाता है।
S + O2 → SO2
4 As + 3O2 → 2 As2O3
2 Zns + 3O2 → 2 ZnO + 2 SO2 ↑

प्रश्न 18.
जिंक ब्लैण्ड से जिंक के निष्कर्षण में भर्जन व अपचयन की अभिक्रिया का रासायनिक समीकरण दीजिए। (2014)
उत्तर
जिंक ब्लैण्ड (ZnS) एक सल्फाइड अयस्क है, अत: इसका निष्कर्षण फेन प्लवन विधि द्वारा सान्द्रित करने के पश्चात् निम्न पदों में किया जाता है –
1. जिंक ब्लैण्ड अयस्क का भर्जन – सान्द्रित जिंक ब्लैण्ड को परावर्तनी भट्ठी में 927°C पर वायु की उपस्थिति में गर्म करने पर यह (ZnS) अपने ऑक्साइड (ZnO) में परिवर्तित हो जाता है। अभिक्रिया निम्न है।
2 ZnS + 3O2 → 2 ZnO + 2 SO2
Zns + 2O2 → ZnSO4
2 ZnSO4 [latex]\underrightarrow { \triangle } [/latex] 2 ZnO + 2 SO2 ↑ + O2

2. ऑक्साइड का अपचयन – भर्जन क्रिया से प्राप्त ZnO को कार्बन के साथ गर्म करने पर ZnO का Zn में अपचयन हो जाता है।
ZnO + C [latex]\underrightarrow { \triangle } [/latex] Zn + CO ↑

प्रश्न 19.
प्रगलन क्या है? उदाहरण देकर स्पष्ट कीजिए। (2009, 10, 12, 13, 14, 15, 16, 17, 18)
या
प्रगलन में किस भट्टी का प्रयोग करते हैं ? इसका नामांकित चित्र बनाइए। (2009, 15)
उत्तर
अयस्क में उचित गालक मिलाकर मिश्रण को उच्च ताप पर गलाने की क्रिया को प्रगलन कहते हैं। इस क्रिया में अयस्क का गलित धातु में अपचयन हो जाता है अथवा धातुयुक्त पदार्थ पिघल जाता है। गालक अयस्क में उपस्थित अपद्रव्य से क्रिया करके धातुमल बनाता है जिसे अलग कर लेते हैं। इसमें वात्या भट्ठी का प्रयोग करते हैं।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 23
लोहा तथा ताँबा धातुओं के निष्कर्षण में वात्या भट्ठी का उपयोग होता है।
उदाहरणार्थ– कॉपर पाइराइट से कॉपर का निष्कर्षण वात्या भट्ठी में प्रगलन द्वारा किया जाता है। इसमें निम्नलिखित अभिक्रियाएँ होती हैं –
Cu2O + Fes → Cu2S + FeO
2 Fes + 3O2 → 2 FeO + 2 SO2 ↑
FeO + SiO2 → FeSiO3

प्रश्न 20.
प्रगलन में कोक और गालक का प्रयोग क्यों किया जाता है? व्याख्या कीजिए। (2009, 17)
उत्तर
प्रगलन में कोक तथा गालक के प्रयोग से अयस्क के निस्तापन से प्राप्त ऑक्साइड को कोक अपचयित करता है, जिससे गलित धातु प्राप्त हो जाती है और अपद्रव्य गालक से क्रिया करके धातुमल के रूप में अलग हो जाते हैं। इससे अयस्क का गलनांक भी कम हो जाता है।

प्रश्न 21.
ऐलुमिनो-थर्मिक विधि क्या है ? इसके उपयोग लिखिए। (2012)
उत्तर
धातुओं के ऑक्साइडों को ऐलुमिनियम चूर्ण के साथ उच्च ताप पर गर्म करने से धातुएँ प्राप्त होती हैं। यह क्रिया ऊष्माक्षेपी है तथा इसको एलुमिनोथर्मिक विधि कहते हैं।
3 Co3O4 + 8 Al → 9 Co + 4Al2O5
3 Mn3O4 + 8 Al → 9 Mn + 4 Al2O5
इस विधि का उपयोग CO, Mn और Cr धातुओं के निष्कर्षण और थर्माइट वेल्डिंग में किया जाता है।

प्रश्न 22.
लीचिंग क्या है? एक उदाहरण द्वारा समझाइए। (2015)
उत्तर
यह विधि रासायनिक परिवर्तन पर आधारित है। इसके अन्तर्गत बारीक पिसे अयस्क को उचित अभिकर्मक के साथ क्रिया कराते हैं। जिससे विलयन की अवस्था में परिवर्तन आ जाता है तथा अशुद्धियाँ ठोस अवस्था में रह जाती हैं।
उदाहरण– बॉक्साइट अयस्क को सान्द्रण करने के लिए Al2O5 . 2H2O की क्रिया NaOH से कराने पर NaAlO2 बन जाता है जो जल में विलेय है और अशुद्धियाँ; जैसे- सिलिका, Fe2O3 नीचे ठोस के रूप में अवक्षिप्त हो जाती हैं।
Al2O3 . 2H2O + 2 NaOH → 2 NaAlO2 + 3 H2O
NaAlO2 + 2H2O → Al(OH)3 + NaOH

प्रश्न23.
लोहे के निष्कर्षण के दौरान वात्या भट्टी में चूने का पत्थर क्यों डालते हैं? समझाइए। (2015)
उत्तर
लोहे के निष्कर्षण के दौरान वात्या भट्टी में मिलाया गया चूना पत्थर (CaCO3) गालक का कार्य करता है। यह धातुमल (SiO2) से संयोग करके धातुमल (CaSiO3) कैल्सियम सिलिकेट बनाता है।

प्रश्न 24.
इस्पात का ऊष्मा उपचार क्यों आवश्यक है ? यह किस प्रकार किया जाता है? (2010, 11, 12)
उत्तर
इस्पात के यान्त्रिक गुण उसके ऊष्मा उपचार पर निर्भर करते हैं। ऊष्मा उपचार द्वारा इस्पात को कठोर या नर्म बनाया जा सकता है।
इस्पात का कठोरीकरण – इस्पात को रक्त-तप्त ताप तक गर्म करके ठण्डे जल द्वारा उसे एकाएक ठण्डा करने की क्रिया इस्पात का कठोरीकरण (hardening of steel) कहलाती है। इस क्रिया से इस्पात बहुत कठोर और भंगुर हो जाता है।

इस्पात का टैम्परीकरण – कठोरीकृत (hardened) इस्पात को किसी उच्च ताप तक (पहले से कम ताप पर) पुनः गर्म करके धीरे-धीरे ठण्डा करने की क्रिया इस्पात का टैम्परीकरण (tempering) कहलाती है। इस क्रिया से इस्पात नर्म (soft) हो जाता है और उसकी भंगुरता (brittleness) मिट जाती है। इस्पात को धीरे-धीरे ठण्डा करने पर ऑस्टीनाइट धीरे-धीरे सीमेन्टाइट और आइरन में अपघटित हो जाता है, जिससे इस्पात नर्म हो जाता है।

प्रश्न 25.
ढलवाँ लोहा, पिटवाँ लोहा तथा इस्पात में अन्तर लिखिए।
उत्तर

  • ढलवाँ लोहा – इसमें लगभग 93 से 94% Fe, 2 से 4% C तथा शेष Si, P तथा Mn की अशुद्धियाँ होती हैं।
  • पिटवाँ लोहा – इसमें 98.8% से 99.9% Fe और 0.1 से 0.25% C तथा शेष Si, P और Mn की अशुद्धियाँ होती हैं।
  • इस्पात – इसमें 98 से 99.8% Fe और 0.25 से 1.5% C होता है।

प्रश्न 26.
स्टेनलेस स्टील का संगठन तथा उपयोग लिखिए।
उत्तर
Fe – 74%, Ni – 8%, Cr (18%)
उपयोग– बर्तन, मूर्तियाँ, बॉल बेयरिंग तथा शल्य चिकित्सा के औजार बनाने में।

प्रश्न 27.
फेरिक क्लोराइड के दो रासायनिक गुण लिखिए।
उत्तर
1. जल- अपघटन पर यह HCl उत्पन्न करता है; अत: इसका जलीय विलयन अम्लीय प्रकृति का होता है।
FeCl3 + 3H2O → Fe(OH)3 + 3 HCl
2. पोटैशियम फेरोसायनाइड विलयन के साथ यह नीले रंग का फेरिक फेरोसायनाइड (प्रशियन ब्लू) बनाता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 24

प्रश्न 28.
कॉपर के किसी एक मिश्र-धातु का संघटन तथा उपयोग लिखिए। (2011)
उत्तर

  • पीतल– Cu (80%), Zn (20%)
  • उपयोग– इसका उपयोग बर्तन बनाने में किया जाता है।

प्रश्न 29.
जिंक ऑक्साइड के दो उपयोग लिखिए। (2011)
उत्तर

  1. सफेद वर्णक (pigment) के रूप में तथा
  2. क्रीम, पाउडर और टूथपेस्ट बनाने में।

प्रश्न 30.
क्रायोलाइट का सूत्र लिखिए। इसका उपयोग किस धातुकर्म में होता है?
उत्तर
क्रायोलाइट का सूत्र Na3AlF6 है। यह ऐलुमिनियम के धातुकर्म में प्रयुक्त होता है।

प्रश्न 31.
फ्लुओरस्पार का सूत्र लिखिए। इसका ऐलुमिनियम के निष्कर्षण में क्या उपयोग है? (2009, 12, 17)
उत्तर
फ्लुओरस्पार का सूत्र CaF2 है। ऐलुमिनियम के निष्कर्षण में इसका उपयोग तरलता बढ़ाने के लिए किया जाता है।

प्रश्न 32.
ऐलुमिना के वैद्युत-अपघटन में क्रायोलाइट का उपयोग समझाइए। (2009, 12)
उत्तर
क्रायोलाइट ऐलुमिना का गलनांक कम करता है तथा ऐलुमिना के वेद्युत-अपघटन में सहायता करता है क्योंकि शुद्ध ऐलुमिना विद्युत कुचालक है परन्तु क्रायोलाइट की सहायता से यह वैद्युत सुचालक हो जाता है।

प्रश्न 33.
Al(OH)3 उभयधर्मी है, समझाइए। (2011)
उत्तर
Al(OH)3 उभयधर्मी है क्योंकि यह अम्लों व अपने से प्रबल क्षारों के साथ क्रिया करके लवण व जल बनाता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 25

प्रश्न 34.
अमलगम तथा मिश्रधातु में क्या अन्तर है?
उत्तर
दो या दो से अधिक धातुओं या धातु व अधातु के समांग मिश्रण को धातु संकर या मिश्रधातु कहते हैं। ये प्राय: ठोस होती हैं। यदि मिश्रधातु में एक धातु मर्करी हो तो इसे अमलगम कहते हैं। ये प्राय: द्रव होती हैं।

लघु उत्तरीय प्रश्न

प्रश्न 1.
परावर्तनी भट्टी का नामांकित चित्र दीजिए और संक्षेप में इसकी कार्य-विधि का वर्णन कीजिए। (2009, 11, 12, 13, 17)
या
परावर्तनी भट्टी का नामांकित चित्र बनाइए। (2018)
उत्तर
भर्जन क्रिया परावर्तनी भट्ठी में करायी जाती है। इस भट्ठी में ईंधन अलग स्थान पर जलाया जाता है। तथा गर्म किये जाने वाले अयस्क को सीधे ज्वाला के सम्पर्क में नहीं आने देते हैं। यह केवल गर्म गैसों के सम्पर्क में आकर गर्म होता है। इस प्रक्रम में गर्म किये जाने वाला पदार्थ भट्टी तल (hearth) पर रखा जाता है और ईंधन अग्नि स्थान (fire place) में जलाया जाता है। इसका उपयोग ऑक्सीकरण तथा अपचयन दोनों प्रकार के प्रक्रमों में करते हैं। इस भट्टी का प्रयोग ताँबा, लेड, टिन आदि धातुओं के धातुकर्म में किया जाता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 26

प्रश्न 2.
मफल भट्टी का सरल नामांकित चित्र बनाइए तथा इसका संक्षिप्त विवरण दीजिए। इसका उपयोग किस धातु के निष्कर्षण में किया जाता है? (2010, 12)
उत्तर
मफल भट्ठी के अन्दर, दो उच्च ताप सह (refractory) ईंटों से बने हुए कोष्ठ होते हैं जिनको मफल (muffle) कहते हैं जैसा कि संलग्न चित्र में दिखाया गया है। सान्द्रित अयस्क को इन मफलों (रिटार्टी) के अन्दर बन्द कर दिया जाता है। दोनों मफलों को विद्युत द्वारा या ईंधन जलाकर चारों तरफ से गर्म किया जाता है। इस प्रकार इस भट्टी में न तो ईंधन और न ही ज्वाला गर्म होने वाले पदार्थ के सम्पर्क में आ सकते हैं। इस भट्ठी में पदार्थ को अत्यधिक ताप तक गर्म किया जा सकता है। धातु पिघलने पर दोनों बगलों में बने हुए निकास द्वारों के द्वारा बाहर निकल जाती है।

जिन धातुओं को गर्म करने पर ईंधन तथा उसके जलने से उत्पन्न गैसों के सम्पर्क में लाना ठीक नहीं होता उन्हीं का निष्कर्षण मफल भट्ठी में करते हैं। इसका उपयोग चाँदी, सोना, जिंक व लेड के धातुकर्म में किया जाता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 27

प्रश्न 3.
इस्पात के निर्माण में प्रयुक्त होने वाली खुले तल की भट्टी का नामांकित चित्र बनाइए। (2009)
या
सीमेन्स-मार्टिन की खुली भट्टी का नामांकित चित्र बनाइए। (2009, 11, 13)
उत्तर
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 28

प्रश्न 4.
बेसेमर परिवर्तक द्वारा ढलवाँ लोहे से इस्पात कैसे प्राप्त किया जाता है? बेसेमर परिवर्तक का चित्र दीजिए और उसमें होने वाली रासायनिक अभिक्रिया का समीकरण भी दीजिए। (2010, 11)
उत्तर
इस विधि में ढलवाँ लोहे को एक बेसेमर परिवर्तक में भरकर उसमें वायु या ऑक्सीजन और भाप का मिश्रण प्रवाहित किया जाता है।
बेसेमर प्रक्रम– यह प्रक्रम बेसेमर परिवर्तक (Bessemer’s Converter) में किया जाता है जिसे संलग्न चित्र में दर्शाया गया है।
यह परिवर्तक पिटवाँ लोहे या इस्पात का अण्डाकार आकृति का पात्र होता है जिसमें उच्च ताप सह (refractory) सिलिको यो डोलोमाइट ईंटों का अस्तर लगा होता है। वायु-प्रवाह हेतु इसमें नीचे की ओर छिद्र होते हैं। इस पात्र को एक क्षैतिज अक्ष पर चारों ओर घुमाया जा सकता है। परिवर्तक में वात्या भट्ठी से प्राप्त पिघला हुआ ढलवाँ लोहा भरकर नीचे से वायु प्रवाहित की जाती है। जिसके फलस्वरूप सिलिकॉन तथा मैंगनीज के ऑक्साइड प्राप्त होते हैं।
Si + O2 → SiO2
2Mn + O2 → 2 MnO
ये ऑक्साइड परस्पर अभिक्रिया करके मैंगनीज सिलिकेट धातुमल बनाते हैं जिसे पृथक् कर दिया जाता है।
MnO + SiO2 → MnSiO3 ↓ (धातुमल)

सल्फर, ऑक्सीकृत होकर SO2 बनाती है, जो ऊपर निकल जाती है। कार्बन, कार्बन मोनोक्साइड में परिणित हो जाती है जो कि परिवर्तक के मुंह पर नीली लौ से जलती है। इस ज्वाला से CO गैस की उपस्थिति का आभास मिलता है। CO गैस जलना बन्द होने का तात्पर्य है कि अभिक्रिया पूर्ण हो गयी है। तत्पश्चात् इसमें स्पीगेल (spiegel) की आवश्यक मात्रा मिलाते हैं (स्पीगेल में लोहे के साथ मैंगनीज तथा कार्बन भी उपस्थित होता है) जिससे लोहे में कार्बन की आवश्यक मात्रा हो जाती है तथा इस्पात प्राप्त होता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 29

प्रश्न 5.
हूप विधि द्वारा ऐलुमिनियम धातु के शोधन का वर्णन कीजिए।
उत्तर
ऐलुमिना के वैद्युत-अपघटन से प्राप्त ऐलुमिनियम धातु में अनेक अशुद्धियाँ होती हैं, जिनको हूप विधि (Hoopes process) से शुद्ध किया जाता है। यह एक वैद्युत-अपघटनी विधि है। ऐनोड के रूप में कार्य करने वाले कार्बन अस्तर लगे एक लोहे के पात्र में सबसे नीचे ताँबा तथा सिलिकन युक्त अशुद्ध ऐलुमिनियम की मिश्रित धातु लगी होती है, जो चालक को कार्य करती है। इसके ऊपर अशुद्ध ऐलुमिनियम धातु का गलित रखा जाता है। इसके ऊपर Na, Ba तथा Al के फ्लुओराइडों के मिश्रण तथा Al2O3 का गलित रखा जाता है, जो वैद्युत-अपघट्य का कार्य करता है। सबसे ऊपर पिघले हुए शुद्ध ऐलुमिनियम की एक पर्त होती है, जो कैथोड का कार्य करती है, जिसमें चालक का कार्य करने हेतु एक ग्रेफाइट की छड़ लगी होती है।

वैद्युत धारा प्रवाहित करने पर अशुद्ध ऐलुमिनियम से शुद्ध ऐलुमिनियम ऊपर की सतह पर आ जाता है और इतनी ही मात्रा में अशुद्ध ऐलुमिनियम को पात्र में लगे कीप से डाल दिया जाता है। इस प्रकार शुद्ध ऐलुमिनियम नीचे की पर्त (ऐनोड) से ऊपर की पर्त (कैथोड) पर आ जाता है और अशुद्धियाँ नीचे बैठ जाती हैं। शुद्ध ऐलुमिनियम को ऊपरी पर्त में बने छिद्र से अलग करके चादरों, छड़ों आदि के रूप में बदल दिया जाता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 30

प्रश्न 6.
सिलिका युक्त बॉक्साइट का शोधन किस प्रकार किया जाता है ? रासायनिक समीकरण भी दीजिए। (2009, 11, 16)
या
सपॅक की विधि द्वारा ऐलुमिना को शोधन कैसे करेंगे? (2016)
उत्तर
जब बॉक्साइट में SiO2 की अशुद्धि अधिकता में होती है, तब सपेंक की विधि का प्रयोग किया जाता है। इस विधि में बॉक्साइट में कार्बन का चूर्ण मिलाकर मिश्रण को 1800°C तक गर्म करके इसमें नाइट्रोजन प्रवाहित की जाती है जिससे ऐलुमिनियम नाइट्राइड (AIN) बनता है तथा सिलिका अपचयित होकर वाष्पशील सिलिकॉन में परिवर्तित हो जाती है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 31
इस प्रकार प्राप्त ऐलुमिनियम नाइट्राइड को पानी के साथ गर्म करने पर इसका जल-अपघटन हो जाता है। जिससे ऐलुमिनियम हाइड्रॉक्साइड का अवक्षेप प्राप्त होता है। इस अवक्षेप को जल से धोकर सुखाकर तेज गर्म करने पर निर्जल ऐलुमिना प्राप्त होता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 32

प्रश्न 7.
जब बॉक्साइट अयस्क में फेरिक ऑक्साइड की अशुद्धि अधिक होती है तथा जब सिलिका की अशुद्धि अधिक होती है तो बॉक्साइट से ऐलुमिना प्राप्त करने की विधि का मान तथा रासायनिक समीकरण लिखिए। (2016)
उत्तर
बॉक्साइट अयस्क में फेरिक ऑक्साइड भी अशुद्धि अधिक होने पर इससे एलुमिना प्राप्त करने के लिए बेयर विधि का प्रयोग किया जाता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 33
बॉक्साइट अयस्क में सिलिका की अशुद्धि अधिक होने पर इससे ऐलुमिना प्राप्त करने के लिए सपेंक विधि का प्रयोग किया जाता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 34

दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
ढलवाँ लोहे का उसके अयस्क से निष्कर्षण की विधि का वर्णन कीजिए। इस निष्कर्षण में प्रयुक्त होने वाली भट्टी के प्रमुख क्षेत्रों में होने वाली अभिक्रियाओं को लिखिए। (2009, 12)
या
लोहे का उदाहरण देते हुए प्रगलन की प्रक्रिया की भट्टी का चित्र एवं रासायनिक समीकरण द्वारा समझाइए। (2018)
उत्तर
ढलवाँ लोहे का निष्कर्षण वात्या भट्टी द्वारा किया जाता है। यह निष्कर्षण हेमेटाइट अयस्क से निम्नलिखित पदों में किया जाता है –
1. धावन– लोहे के अयस्कों में 20 – 55% के बीच लोहा होता है इसीलिए इसका सान्द्रण करने की आवश्यकता नहीं पड़ती है। हल्की अशुद्धियाँ; जैसे- रेत, मिट्टी आदि घनत्व पृथक्करण विधि द्वारा पृथक् कर ली जाती हैं। अयस्क के महीन चूर्ण पर जल की धारा प्रवाहित करने से अशुद्धियाँ जल के साथ बह जाती हैं तथा लोहे का भारी अयस्क नीचे बैठ जाता है।

2. चुम्बकीय सान्द्रण – इस विधि में मैग्नेटाइट अयस्क का सान्द्रण चुम्बकीय विधि द्वारा किया जाता है।

3. प्रारम्भिक भर्जन अथवा निस्तापन – अयस्क को बारीक टुकड़ों में करके, उसमें कोयला मिलाया जाता है, फिर इस मिश्रण को कम गहरी भट्ठियों में तथा वायु की अधिकता में गर्म किया जाता है। इस प्रकार निस्तापने करने से निम्नलिखित परिवर्तन होते हैं –

  1. नमी भाप बनकर निकल जाती है
  2. अयस्क में उपस्थित कार्बनिक पदार्थ CO2 के रूप में निकल जाते हैं।
  3. गन्धक तथा आर्सेनिक क्रमशः SO2 व As2O3 के रूप में निकल जाते हैं।
  4. कार्बोनेट अयस्क अपघटित होकर फेरस ऑक्साइड बनाता है, जो फेरिक ऑक्साइड में ऑक्सीकृत हो जाता है, जिससे गलनीय फेरस सिलिकेट (FeSiO3) नहीं बनता है।
    FeCO3 → FeO + CO2
    4 FeO + O2 → 2Fe2O3
  5. अयस्क सरन्ध्र (porous) हो जाता है जिससे इसका अपचयन सरलतापूर्वक हो जाता है।

4. प्रगलन – निस्तापित अयस्क में कोक तथा चूने का पत्थर मिलाकर उसे कप तथा कोन व्यवस्था की सहायता से धीरे-धीरे एक बड़ी वात्या भट्ठी में प्रगलित किया जाता है। नीचे से शुष्क तथा गर्म वायु ईंधन को गर्म करने के लिए प्रवाहित की जाती है। भट्टी से निकलने वाली गर्म गैसों को एक धूल कक्ष तथा काउपर स्टोव में से प्रवाहित किया जाता है। इस व्यवस्था से काफी ईंधन बच जाता है। जैसे-जैसे चार्ज नीचे खिसकता है, वह अधिक ताप के कटिबन्धों (zones) में से गुजरता है। नीचे पहुँचकर लोहा पिघल जाता है। इसके ऊपर धातुमल की परत तैरने लगती है। धातुमल को ऊपर के छेद से तथा पिघली धातु को नीचे के छेद से निकाल लेते हैं। पिघली धातु को साँचों में ढाल लेते हैं। इस प्रकार ढलवाँ लोहा प्राप्त होता है।
[संकेत– वात्या भट्टी के लिए पृष्ठ 165 पर चित्र देखें]

वात्या भट्ठी में होने वाली अभिक्रियाएँ – विभिन्न कटिबन्धों में निम्नलिखित अभिक्रियाएँ होती हैं –
(i) प्रारम्भिक ताप का कटिबन्ध – यह भट्ठी का सबसे ऊपर का क्षेत्र है। यहाँ ताप 250°C रहता है। यहाँ चार्ज की सारी नमी दूर हो जाती है।

(ii) अपचयन का ऊपरी कटिबन्ध – यहाँ ताप लगभग 300°C – 900°C रहता है। यहाँ नीचे से आने वाली गर्म वायु, कोक से क्रिया करके CO बनाती है।
2C + O2 → 2 CO ↑
यह गैस नीचे से ऊपर उठती है और लोहे के ऑक्साइडों को स्पंजी लोहे में अपचयित कर देती है।

  1. 3Fe2O3 + CO [latex]\underrightarrow { { 300 }^{ 0 }C } [/latex] 2 Fe3O4 + CO2 ↑
  2. Fe3O4 + CO [latex]\underrightarrow { { 500 }^{ 0 }C } [/latex] 3 FeO + CO2 ↑
  3. FeO + CO [latex]\underrightarrow { { 700 }^{ 0 }C } [/latex] Fe + CO2 ↑

700°C पर चूने का पत्थर भी अपघटित हो जाता है।

  1. CaCO3 [latex]\rightleftharpoons [/latex] CaO + CO2
  2. CaCO3 + C → CaO + 2CÓ ↑

अतः ऊपर उठने वाली गैसे CO तथा CO2 का मिश्रण होती हैं।

(iii) अपचयन का निचला कटिबन्ध – यहाँ ताप 900°C – 1200°C रहता है। इस कटिबन्ध में स्पंजी लोहे की उपस्थिति में CO की नियोजन क्रिया (2 CO → CO2 + C) उत्प्रेरित होकर कार्बन देती है। यह कार्बन निचले कटिबन्ध के लोहे से संयोग करता है। कार्बन के साथ Mn, P, S, Si आदि अशुद्धियाँ भी लोहे से संयोग कर लेती हैं। इस कारण लोहा 1200°C पर ही पिघल जाता है,
जबकि इसका गलनांक 1580°C है।

(iv) गलन कटिबन्ध – यहाँ ताप 1200°C – 1500°C रहता है। इसमें स्पंजी लोहा पूर्णतया पिघल । जाता है। इसमें C, Mn, P, Si आदि अशुद्धियाँ घुल जाती हैं तथा चूना, सिलिका व ऐलुमिना के साथ धातुमल बनाती हैं जो पिघले लोहे पर तैरने लगता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 35
धातुमल के कारण लोहा वायु की ऑक्सीजन के सम्पर्क में आकर ऑक्सीकृत नहीं होने पाता।

प्रश्न 2.
सल्फाइड अयस्क से धातु (कॉपर) निष्कर्षण की विधि का वर्णन कीजिए। सम्बन्धित रासायनिक समीकरण भी दीजिए। (2009, 10, 11, 12, 13, 14, 15, 16, 17)
या
कॉपर पायराइट से ताँबे के निष्कर्षण की विधि का वर्णन कीजिए। सम्बन्धित रासायनिक समीकरण लिखिए। प्राप्त धातु को किस प्रकार शुद्ध करेंगे? (2009, 10, 11, 12, 13, 14, 15, 16, 17)
उत्तर
कॉपर को मुख्य अयस्क कॉपर पायराइट (CuFeS2) है जो कि सल्फाइड अयस्क है। कॉपर पायराइट से ताँबा निष्कर्षित करने के लिए निम्नलिखित प्रक्रम करने होते हैं –
1. सान्द्रण – अयस्क को बारीक पीसकर चूर्ण बना लिया जाता है तत्पश्चात् फेन प्लवन विधि (Froth Floatation Process) द्वारा सान्द्रण कर लेते हैं।

2. भर्जन – सान्द्रित अयस्क को हवा की अधिकता और न्यून ताप पर गर्म किया जाता है जिसे भर्जन कहा जाता है। यह क्रिया परावर्तनी भट्ठी (Reverberatory furnace) में होती है। इस भट्ठी में गैस की ज्वालाएँ अयस्क पर प्रतिबिम्बित होती हैं। भट्ठी में हवा के लिए विशेष छेद बने होते हैं। भर्जन क्रिया में अयस्क में निम्नलिखित परिवर्तन होते हैं –

  1. अयस्क में उपस्थित मुक्त सल्फर SO2 में ऑक्सीकृत होकर बाहर निकल जाता है।
    S + O2 → SO2
  2. आर्सेनियस की अशुद्धि वाष्पशील (volatile) आर्सेनियस ऑक्साइड के रूप में बाहर निकल जाती है।
    4As + 3O2 → 2As2O3 ↑
  3. कॉपर पायराइट, क्यूप्रस सल्फाइड और फेरस सल्फाइड में बदल जाता है।
    2CuFeS2 + O2 → Cu2S + 2 Fes + SO2
  4. अधिकांश फेरस सल्फाइड, फेरस ऑक्साइड में बदल जाता है।
    2Fes + 3O2 → 2FeO + 2SO2 ↑
  5. क्यूप्रस सल्फाइड आंशिक रूप से क्यूप्रस ऑक्साइड में बदल जाती है।
    2 Cu2S + 3O2 → 2Cu2O + 2SO2

भर्जन के बाद कॉपर व आयरन के ऑक्साइड और सल्फाइड का मिश्रण प्राप्त होता है, जिसे भर्जित अयस्क कहते हैं।

3. प्रगलन – भर्जित अयस्क में सिलिका और कोक मिलाकर मिश्रण को वाया भट्ठी में प्रगलित किया जाता है। यह भट्ठी स्टील की प्लेटों की बनी होती है जिसके अन्दर अग्निसह ईंटों का अस्तर तथा बाहर वॉटर जैकेट लगा होता है। भट्ठी के निचले भाग में ट्वीयर (tuyers) लगे होते हैं जिनसे गर्म वायु का झोंका भट्ठी में भेजा जाता है। गलित पदार्थ भट्ठी के तल में एकत्रित होते हैं तथा अवशिष्ट गैसें भट्ठी के ऊपरी भाग से बाहर निकलती हैं। प्रगलन में निम्नलिखित परिवर्तन होते हैं –

  1. क्यूप्रस ऑक्साइड फेरस सल्फाइड से क्रिया करके क्यूप्रस सल्फाईड में बदल जाता है।
    Cu2O + FeS → Cu2S + FeO
  2. फेरस सल्फाइड की काफी मात्रा फेरस ऑक्साइड में परिवर्तित हो जाती है।
    2Fes + 3O2 → 2FeO + 2SO2 ↑
  3. फेरस ऑक्साइड सिलिका (SiO2) से संयोग करके गलित फेरस सिलिकेट बनाता है जिसे धातुमल (slag) कहते हैं। सिलिको गालक का कार्य करता है।
    FeO + SiO2 → FeSiO3

क्यूप्रस सल्फाइड और फेरस सल्फाइड का गलित मिश्रण जिसे मैट (matte) कहते हैं, भट्ठी के पेंदे में एकत्रित हो जाता है और मैट के ऊपर गलित धातुमल की परत जमा हो जाती है। मैट को निकास द्वार से बाहर निकाल दिया जाता है। इसमें लगभग 50% ताँबा होता है।

4. बेसेमरीकरण – गलित मैट में थोड़ी सिलिका मिलाकर एक बेसेमर परिवर्तक में भर देते हैं और उसमें गर्म वायु का झोंका प्रवाहित किया जाता है। बेसेमर परिवर्तक में नाशपाती की आकृति का स्टील का पात्र होता है जिसके भीतर अग्निसह ईंटों तथा लाइम का अस्तर लगा रहता है। इसकी बगल में, काफी ऊँचाई पर ट्वीयर लगा होता है जिसके द्वारा गर्म वायु का झोंका परिवर्तक में भेजा जाता है। गलित मैट और सिलिका के मिश्रण में गर्म वायु का झोंका प्रवाहित करने पर निम्नलिखित अभिक्रियाएँ होती हैं –

  1. मैट में उपस्थित फेरस सल्फाइड फेरस ऑक्साइड में बदल जाता है।
    2FeS + 3O2 → 2FeO + 2SO2
  2. फेरस ऑक्साइड सिलिका से संयोग करके गलित फेरस सिलिकेट (धातुमल) बनाता है।
    FeO + SiO2 → FeSiO3
  3. क्यूप्रस सल्फाइड का कुछ भाग क्यूप्रस ऑक्साइड में परिवर्तित हो जाता है जो बचे हुए क्यूप्रस सल्फाइड से क्रिया करके कॉपर बनाता है।
    2 Cu2S + 3O2 → 2 Cu2O + 2SO2
    Cu2S + 2 Cu2O → 6 Cu + SO2 ↑

गलित कॉपर के ऊपर से धातुमल की परत को हटाने के उपरान्त परिवर्तक को उलटकर गलित कॉपर को बाहर निकाल लेते हैं। इसे ठण्डा करने पर SO2 बुलबुलों के रूप में बाहर निकलती है। जिससे कॉपर की सतह पर फफोले पड़ जाते हैं। इस कॉपर को फफोलेदार कॉपर (blister copper) कहते हैं। इसमें लगभग 98% कॉपर तथा 2% अशुद्धियाँ (सल्फर, आर्सेनिक, आयरन, सिल्वर, गोल्ड आदि) होती हैं। इनको शोधन द्वारा पृथक् कर लेते हैं।

5. शोधन – अशुद्ध कॉपर को मुख्यत: वैद्युत-अपघटनी विधि द्वारा शुद्ध किया जा सकता है। इस प्रक्रम में एक टैंक में अशुद्ध ताँबे के पट लटका दिये जाते हैं। ये ऐनोड का कार्य करते हैं। शुद्ध ताँबे की पतली पत्तियाँ कैथोड का काम करती हैं। कॉपर सल्फेट का अम्लीय विलयन वैद्युत-अपघट्य के रूप में प्रयुक्त किया जाता है। वैद्युत धारा प्रवाहित करने पर कैथोड पर शुद्ध ताँबा जमा होता है तथा अशुद्धियाँ (लोहा, निकिल और जिंक) विलयन में रह जाती हैं। सोना या चाँदी अवक्षेप के रूप में ऐनोड के नीचे जमा हो जाते हैं, इनको ऐनोड पंक (Anode mud) कहा जाता है। इस प्रकार कैथोड पर शुद्ध (99.98%) ताँबा प्राप्त होता है।

प्रश्न 3.
ऐलुमिनियम के दो मुख्य अयस्कों के नाम तथा सूत्र लिखिए। बॉक्साइट के शुद्धिकरण की किसी एक विधि को संक्षेप में वर्णन कीजिए। ऐलुमिना से धातु कैसे प्राप्त की जाती है? (2010, 12, 14, 15, 16)
उत्तर
ऐलुमिनियम के दो मुख्य अयस्क-

  1. बॉक्साइट [Al2O5 . 2H2O]
  2. क्रायोलाइट [Na3AlF6]

बॉक्साइट के शुद्धिकरण को बेयर प्रक्रम – जब बॉक्साइट में Fe,05 की अधिक मात्रा होती है तो यह प्रक्रम प्रयुक्त होता है। इस प्रक्रम में बारीक पिसे बॉक्साइट को कॉस्टिक सोडा विलयन के साथ ऑटोक्लेव में 150°C तथा 80 वायुमण्डलीय दाब पर गर्म करते हैं। इस प्रकार Al2O3, सोडियम मेटाऐलुमिनेट में परिवर्तित हो जाता है, जो जल में घुलनशील है। अविलेय अशुद्धियों को विलयन से छानकर पृथक् कर लेते हैं। निस्यन्द में थोड़ा-सा नव-अवक्षेपित Al(OH)3 डालकर जल के साथ उबालते हैं। इससे सोडियम मेटाऐलुमिनेट जल-अपघटित होकर Al(OH)3 का अवक्षेप देता है। इस अवक्षेप को छानकर, धोकर सुखा , लेते हैं। इस सूखे अवक्षेप को गर्म करने से शुद्ध ऐलुमिना प्राप्त हो जाता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 36

ऐलुमिना से धातु का निष्कर्षण – शुद्ध ऐलुमिना के वैद्युत अपघटने, जिसे इलेक्ट्रो अपचयन विधि भी कहते हैं, से ऐलुमिनियम धातु प्राप्त की जाती है। शुद्ध ऐलुमिना (Al2O3) का गलनांक 2050° C होता है। इसमें Na3AlF6 तथा CaF2 मिलाकर गर्म करने पर यह 875°C से 900°C के मध्य ही पिघल जाता है। Al2O3, Na3AlF6 तथा CaF2 के मिश्रण के गलित को कार्बन अस्तर लगे एक लोहे के पात्र में डालकर उसमें ग्रेफाइट की छड़े लटकायी जाती हैं। कार्बन अस्तर कैथोड तथा ग्रेफाइट छड़ ऐनोड का कार्य करती है। वैद्युत चक्र में समानान्तर क्रम में एक बल्ब लगाकर वैद्युत धारा प्रवाहित की जाती है जिससे ऐनोड पर ऑक्सीजन मुक्त होती है, जो ग्रेफाइट से क्रिया करके CO2 गैस के रूप में निकल जाती है। कैथोड (कार्बन अस्तर) पर ऐलुमिनियम धातु मुक्त होती है जिसे समय-समय पर एक छिद्र से बाहर निकाल लिया जाता है। ग्रेफाइट के ऐनोड के ऑक्सीकरण के कारण ग्रेफाइट समाप्त होती जाती है जिससे कुछ समय बाद नया ऐनोड लगाना पड़ता है। वैद्युत-अपघटन की क्रिया का रासायनिक समीकरण इस प्रकार है –
पहले क्रायोलाइट आयनित होता है।
Na3AIF6 [latex]\rightleftharpoons [/latex] 3 Na+ + Al3+ + 6F
Al3+ + 3e → Al (कैथोड पर) (अपचयन)
2F  – 2e → F2 (ऐनोड पर) (ऑक्सीकरण)
फ्लोरीन ऐलुमिना से क्रिया करके ऐनोड पर 02 मुक्त करती है।
2Al2O3 + 6F2 → 4AlF3 + 3O2
2C + O2 → 2CO
C + O2 → CO2
क्रायोलाइट की उपस्थिति में गलित ऐलुमिना के वैद्युत-अपघटन से लगभग 99.8% शुद्ध ऐलुमिनियम प्राप्त होता है।
UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements image 37

प्रश्न 4.
सिल्वर (Ag) के निष्कर्षण की किसी एक विधि का वर्णन कीजिए। या सायनाइड प्रक्रम द्वारा चाँदी प्राप्त करने की विधि तथा आवश्यक रासायनिक समीकरण लिखिए। (2018)
उत्तर
सिल्वर धातु अत्यधिक क्रियाशील न होने के कारण प्रकृति में मुक्त तथा संयुक्त दोनों अवस्थाओं में पाई जाती है। इसके निष्कर्षण की विधि निम्नवत् है –
1. सान्द्रण – इसके सल्फाइड अयस्क को बाल मिल (Ball mill) में महीन पीसकर इसका झाग प्लवन विधि से सान्द्रण किया जाता है। एक टैंक में जल भरकर उसमें थोड़ा-सा चीड़ का तेल और थोड़ा-सा पोटैशियम एथिलजैन्थेट मिलाकर उसमें महीन पिसा हुआ सल्फाइड अयस्क डालकर वायु की तेज धारा द्वारा विलोडित करते हैं। सल्फाइड अयस्क झाग के रूप में द्रव के सतह के ऊपर तैरने लगता है और भारी अशुद्धियाँ टैंक की पेंदी में बैठ जाती हैं। फेन को अलग करके सुखाकर पीस लिया जाता है।

2. सायनाइड से अभिक्रिया – पिसे हुए सान्द्रित सल्फाइड अयस्क को एक छिद्रयुक्त पेंदी के टैंक में भर देते हैं। इस टैंक के भीतर किरमिच का अस्तर लगा होता है। अब अयस्क में 0.4 से 0.6% सोडियम सायनाइड का घोल मिलाकर हवा की तेज धारा प्रवाहित करते हैं और इस मिश्रण को तीव्रता से हिलाया जाता है। ऐसा करने से सल्फाइड अयस्क में उपस्थित सिल्वर, सायनाइड से क्रिया करके विलेयशील सोडियम डाइसायनोअर्जेन्टेट (I) संकर लवण बनाता है।
Ag2S + 4 NaCN [latex]\rightleftharpoons [/latex] 2 Na[Ag(CN2)]+ Na2S
सोडियम सल्फाइड वायु के द्वारा सोडियम सल्फेट में ऑक्सीकृत हो जाता है।
4Na2S + 5O2 + 2H2O → 2Na2SO4 + 4NaOH + 2S
सोडियम डाइसायनोअर्जेन्टेट (I) विलयन टैंक की पेंदी से टपकता रहता है जिसको एकत्रित करके फिर टैंक में डाल दिया जाता है। इस क्रिया को तीन-चार बार दोहराया जाता है जिससे सोडियम डाइसायनोअर्जेन्टेट (I) का सान्द्र विलयन प्राप्त हो जाता है।

3. सिल्वर का अवक्षेपण – सान्द्र डाइसायनोअर्जेन्टेट (I) विलयन को अवक्षेपण कक्षों में से प्रवाहित करते हैं। इन कक्षों में जिंक धातु की छीलन रखी होती है जो डाइसायनोअर्जेन्टेट (I) विलयन से सिल्वर को प्रतिस्थापित करके सिल्वर का काला अवक्षेप देता है और इस प्रकार से प्राप्त विलयन को छानकर सिल्वर का काला अवक्षेप पृथक् कर लेते हैं।
2Na[Ag(CN2] + Zn → Na2[Zn(CN4) + 2 Ag] ↓
सिल्वर को ऐलुमिनियम पाउडर द्वारा भी अवक्षेपित कराया जाता है।ऐलुमिनियम का उपयोग करने से सीधा ही सोडियम सायनाइड प्राप्त हो जाता है।
Al + 3Na[Ag(CN)2] + 4NaOH → 3Ag ↓ + 6NaCN + NaAlO2 + 2H2O
जिंक द्वारा अवक्षेपण करने में जो जिंक सायनाइड संकर बनता है वह बचे हुए सल्फाइड अयस्क को भी डाइसायनोअर्जेन्टेट (I) में परिवर्तित कर सकता है और इस प्रकार सायनाइड की हानि नहीं होती।
Ag2S+ Na2[Zn(CN)4] → 2Na[Ag(CN)2] + ZnS

प्रश्न 5.
गोल्ड (Au) के निष्कर्षण एवं शोधन की विधि का वर्णन कीजिए।
उत्तर
गोल्ड का शुद्धिकरण – गोल्ड का शुद्धिकरण निम्न विधियों द्वारा किया जाता है –
1. क्वार्टेशन विधि – इस विधि द्वारा कॉपर व सिल्वर की अशुद्धियों को हटाया जाता है। यह विधि
इस तथ्य पर आधारित है कि कॉपर व सिल्वर सल्फ्यूरिक व नाइट्रिक अम्लों में घुल जाते हैं, जबकि गोल्ड इन अम्लों के द्वारा प्रभावित नहीं होता। यदि अशुद्ध नमूने में गोल्ड 30% से अधिक है तो कॉपर व सिल्वर भी इन अम्लों के द्वारा प्रभावित नहीं होते। अतः इन अम्लों से अभिक्रिया करने से पहले नमूने को सिल्वर की आवश्यक मात्रा के साथ गलाते हैं जिससे नमूने में गोल्ड की प्रतिशत मात्रा 25% तक घट जाए। इसीलिए इसे क्वॉर्टेशन विधि कहते हैं। परिणामी मिश्र धातु को सान्द्र H,SO, के साथ प्रतिकृत करते हैं जिससे कॉपर व सिल्वर सल्फेटों के रूप में विलयन में आ जाते हैं, जबकि गोल्ड शेष रह जाता है। इस प्रकार से प्राप्त गोल्ड को बोरेक्स व KNOs के साथ गलित। करते हैं जिससे शुद्ध गोल्ड प्राप्त हो जाता है।

  • Cu + 2H2SO4 → CuSO4 + 2H2O + SO2
  • 2Ag + 2H2SO4 → Ag2SO4 + 2H2O + SO2

(ii) विद्युत-अपघटनी विधि गोल्ड का शुद्धिकरण विद्युत अपघटनी विधि के द्वारा भी किया जा सकता है। इस विधि में गोल्ड क्लोराइड के विलयन जिसमें 10 – 20% HCl होता है का विद्युत-अपघटन किया जाता है। अशुद्ध गोल्ड ऐनोड के रूप में तथा शुद्ध गोल्ड कैथोड के रूप में किया जाता है। शुद्ध गोल्ड कैथोड पर एकत्रित हो जाता है, जबकि बने सिल्वर क्लोराइड को कीचड़ (mud) के रूप में हटा दिया जाता है।

We hope the UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements (तत्त्वों के निष्कर्षण के सिद्धान्त एवं प्रक्रम) help you. If you have any query regarding UP Board Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements (तत्त्वों के निष्कर्षण के सिद्धान्त एवं प्रक्रम), drop a comment below and we will get back to you at the earliest.

UP Board Solutions for Class 12 Physics Chapter 12 Atoms

UP Board Solutions for Class 12 Physics Chapter 12 Atoms (परमाणु) are part of UP Board Solutions for Class 12 Physics. Here we have given UP Board Solutions for Class 12 Physics Chapter 12 Atoms (परमाणु).

Board UP Board
Textbook NCERT
Class Class 12
Subject Physics
Chapter Chapter 12
Chapter Name Atoms (परमाणु)
Number of Questions Solved 51
Category UP Board Solutions

UP Board Solutions for Class 12 Physics Chapter 12 Atoms (परमाणु)

अभ्यास के अन्तर्गत दिए गए प्रश्नोत्तर

प्रश्न 1:
प्रत्येक कथन के अन्त में दिए गए संकेतों में से सही विकल्प का चयन कीजिए
(a) टॉमसन मॉडल में परमाणु का साइज, रदरफोर्ड मॉडल में परमाण्वीय साइज से………..होता है। (अपेक्षाकृत काफी अधिक, भिन्न नहीं, अपेक्षाकृत काफी कम)
(b) ……..में निम्नतम अवस्था में इलेक्ट्रॉन स्थायी साम्य में होते हैं जबकि ……..में इलेक्ट्रॉन, सदैव नेट बल अनुभव करते हैं। (रदरफोर्ड मॉडल, टॉमसन मॉडल)
(c) ………पर आधारित किसी क्लासिकी परमाणु का नष्ट होना निश्चित है। (टॉमसन मॉडल, रदरफोर्ड मॉडल)
(d) किसी परमाणु के द्रव्यमान का……..में लगभग संतत वितरण होता है लेकिन……..में अत्यन्त असमान द्रव्यमान वितरण होता है। (रदरफोर्ड मॉडल, टॉमसन मॉडल)
(e) ………में परमाणु के धनावेशित भाग का द्रव्यमान सर्वाधिक होता है। (रदरफोर्ड मॉडल, दोनों मॉडलों)
उत्तर:
(a) भिन्न नहीं,
(b) टॉमसन, मॉडल, रदरफोर्ड मॉडल,
(c) रदरफोर्ड मॉडल,
(d) टॉमसन मॉडल, रदरफोर्ड मॉडल,
(e) रदरफोर्ड मॉडल।

UP Board Solutions

प्रश्न 2:
मान लीजिए कि स्वर्ण पन्नी के स्थान पर ठोस हाइड्रोजन की पतली शीट का उपयोग करके आपको ऐल्फा-कण प्रकीर्णन प्रयोग दोहराने का अवसर प्राप्त होता है। (हाइड्रोजन 14K से नीचे ताप पर ठोस हो जाती है।) आप किस परिणाम की अपेक्षा करते हैं?
उत्तर:
हाइड्रोजन परमाणु का नाभिक एक प्रोटॉन है जिसका द्रव्यमान (1.67 x 10-27 kg) α – कण के द्रव्यमान (6.64 x 10-27 kg) की तुलना में कम है। यह हल्का नाभिक भारी α -कण को प्रतिक्षिप्त नहीं कर पाएगा; अतः α-कण सीधे नाभिक की ओर जाने पर भी वापस नहीं लौटेगा और इस प्रयोग में α-कण का बड़े कोणों पर विक्षेपण भी नहीं होगा।

प्रश्न 3:
‘पाशन श्रेणी में विद्यमान स्पेक्ट्रमी रेखाओं की लघुतम तरंगदैर्ध्य क्या है?
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

प्रश्न 4:
2.3eV ऊर्जा अन्तर किसी परमाणु में दो ऊर्जा स्तरों को पृथक कर देता है। उत्सर्जित विकिरण की आवृत्ति क्या होगी यदि परमाणु में इलेक्ट्रॉन उच्च स्तर से निम्न स्तर में संक्रमण करता है?
हल:
दिया है, ∆E = 2.3 eV= 2.3 x 1.6 x 10-19 जूल; h = 6.62 x 10-34 जूल-सेकण्ड विकिरण की आवृत्ति ν = ?
UP Board Solutions for Class 12 Physics Chapter 12 Atoms 4

प्रश्न 5:
हाइड्रोजन परमाणु की निम्नतम अवस्था में ऊर्जा -13.6 eV है। इस अवस्था में इलेक्ट्रॉन की गतिज ऊर्जा और स्थितिज ऊर्जाएँ क्या होंगी?
हल:
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

प्रश्न 6:
निम्नतम अवस्था में विद्यमान एक हाइड्रोजन परमाणु एक फोटॉन को अवशोषित करता है। जो इसे n = 4 स्तर तक उत्तेजित कर देता है। फोटॉन की तरंगदैर्घ्य तथा आवृत्ति ज्ञात कीजिए।
हल:
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

प्रश्न 7:
(a) बोर मॉडल का उपयोग करके किसी हाइड्रोजन परमाणु में n=1, 2 तथा 3 स्तरों पर इलेक्ट्रॉन की चाल परिकलित कीजिए।
(b) इनमें से प्रत्येक स्तर के लिए कक्षीय अवधि परिकलित कीजिए।
हल:
(a) दिया है,
e= 1.6 x 10-19 कूलॉम, ६ = 8.85 x 10-12 कूलॉम2/न्यूटन मीटर2
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter
UP Board Solutions for Class 12 Physics Chapter 12 Atoms 7a

UP Board Solutions

प्रश्न 8:
हाइड्रोजन परमाणु में अन्तरतम इलेक्ट्रॉन-कक्षा की त्रिज्या 5.3 x 10-11m है। कक्षा n= 2 और n = 3 की त्रिज्याएँ क्या हैं?
हल:
बोर की nवीं कक्षा की त्रिज्या
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

प्रश्न 9:
कमरे के ताप पर गैसीय हाइड्रोजन पर किसी 12.5 eV की इलेक्ट्रॉन पुंज की बमबारी की गई। किन तरंगदैघ्र्यों की श्रेणी उत्सर्जित होगी?
हल:
निम्नतम ऊर्जा स्तर में H2 परमाणु की ऊर्जा E1 = -13.6 eV
जब इस पर 12.5eV ऊर्जा के इलेक्ट्रॉन की (UPBoardSolutions.com) बमबारी की जाती है तो इस ऊर्जा को अवशोषित करने पर माना यह नावे उत्तेजित ऊर्जा स्तर में चला जाता है।
अत: En = E1 +12.75 = -(-13.6 +12.75)eV = -0.85 eV
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter
अत: चित्र 12.1 में प्रदर्शित रेखाएँ (तरंगदैर्घ्य उत्सर्जित होंगी)।
सूत्र λ = [latex]\frac { hc }{ \Delta E }[/latex] से, प्रत्येक रेखा के संगत तरंगदैर्घ्य ज्ञात करें। इनके मान क्रमशः होंगे
970.6 [latex]\mathring { A }[/latex], 1023.6 [latex]\mathring { A }[/latex]; 1213.2 [latex]\mathring { A }[/latex], 4852.9[latex]\mathring { A }[/latex]; 6547.6 [latex]\mathring { A }[/latex]; 28409 [latex]\mathring { A }[/latex]

UP Board Solutions

प्रश्न 10:
बोर मॉडल के अनुसार सूर्य के चारों ओर 1.5 x 1011m त्रिज्या की कक्षा में, 3 x 104m/s के कक्षीय वेग से परिक्रमा करती पृथ्वी की अभिलाक्षणिक क्वांटम संख्या ज्ञात कीजिए। (पृथ्वी का द्रव्यमान= 6.0 x 1024 kg)।
हल:
दिया है, पृथ्वी का द्रव्यमान m = 6.0 x 1024 किग्रा; कक्षा की त्रिज्या r = 1.5 x 1011 मीटर
तथा पृथ्वी का कक्षीय वेग ν = 3 x 104 मीटर/सेकण्ड
h = 6.62 x 104 जूल-सेकण्ड
बोर मॉडल के अनुसार, mνr = [latex s=2]\frac { nh }{ 2\pi }[/latex]
27 यहाँ n कक्षा की अभिलाक्षणिक क्वाण्टम संख्या है।
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter
उपग्रह की गति के लिए यह क्वाण्टम संख्या अत्यन्त विशाल है और इतनी विशाल क्वाण्टम संख्या के लिए क्वाण्टीकृत प्रतिबन्धों के परिणाम चिरसम्मत भौतिकी से मेल खाने लगते हैं।

अतिरिक्त अभ्यास

प्रश्न 11:
निम्नलिखित प्रश्नों के उत्तर दीजिए जो आपको टॉमसन मॉडल और रदरफोर्ड मॉडल में अन्तर समझने हेतु अच्छी तरह से सहायक हैं।
(a) क्या टॉमसन मॉडल में पतले स्वर्ण पन्नी से प्रकीर्णित α-कणों का पूर्वानुमानित औसत विक्षेपण कोण, रदरफोर्ड मॉडल द्वारा पूर्वानुमानित मान से अत्यन्त कम, लगभग समान अथवा अत्यधिक बड़ा है?
(b) टॉमसन मॉडल द्वारा पूर्वानुमानित पश्च प्रकीर्णन की प्रायिकता (अर्थात α-कणों का 90° से बड़े कोणों पर प्रकीर्णन) रदरफोर्ड मॉडल द्वारा पूर्वानुमानित मान से अत्यन्त कम, लगभग समान अथवा अत्यधिक है?
(c) अन्य कारकों को नियत रखते हुए, प्रयोग द्वारा यह पाया गया है कि कम मोटाई t के लिए, मध्यम कोणों पर प्रकीर्णित α-कणों की संख्या t के अनुक्रमानुपातिक है। t पर यह रैखिक निर्भरता क्या संकेत देती है?
(d) किस मॉडल में α -कणों के पतली पन्नी से प्रकीर्णन के पश्चात औसत प्रकीर्णन कोण के परिकलन हेतु बहुप्रकीर्णन की उपेक्षा करना पूर्णतया गलत है?
उत्तर:
(a) औसत विक्षेपण कोण दोनों मॉडलों के लिए लगभग समान है।
(b) टॉमसन मॉडल द्वारा पूर्वानुमानित पश्च प्रकीर्णन की प्रायिकता, रदरफोर्ड मॉडल द्वारा पूर्वानुमानित मान की तुलना में अत्यन्त कम है।
(c) t पर रैखिक निर्भरता यह प्रदर्शित करती है कि प्रकीर्णन मुख्यतः एकल संघट्ट के कारण होता है। मोटाई t के बढ़ने के साथ लक्ष्य स्वर्ण नाभिकों की संख्या रैखिक रूप से बढ़ती है; अत: α-कणों के, स्वर्ण नाभिक से एकल संघट्ट की सम्भावना रैखिक रूप से बढ़ती है।
(d) टॉमसन मॉडल में परमाणु का सम्पूर्ण धनावेश परमाणु में समान रूप से वितरित है; अत: एकल संघट्ट α-कण को अल्प कोण से विक्षेपित कर पाता है। अतः इस (UPBoardSolutions.com) मॉडल में औसत प्रकीर्णन कोण का परिकलन, बहुप्रकीर्णन के आधार पर ही किया जा सकता है। दूसरी ओर रदरफोर्ड मॉडल में प्रकीर्णन एकल संघट्ट के कारण होता है; अतः बहुप्रकीर्णन की उपेक्षा की जा सकती है।

प्रश्न 12:
हाइड्रोजन परमाणु में इलेक्ट्रॉन एवं प्रोटॉन के मध्य गुरुत्वाकर्षण, कूलॉम-आकर्षण से लगभग 10-40 के गुणक से कम है। इस तथ्य को देखने का एक वैकल्पिक उपाय यह है कि यदि इलेक्ट्रॉन एवं प्रोटॉन गुरुत्वाकर्षण द्वारा सम्बद्ध हों तो किसी हाइड्रोजन परमाणु में प्रथम बोर कक्षा की त्रिज्या का अनुमान लगाइए। आप मनोरंजक उत्तर पाएँगे।
हल:
माना इलेक्ट्रॉन का द्रव्यमान me व प्रोटॉन का द्रव्यमान mp है।
UP Board Solutions for Class 12 Physics Chapter 12 Atoms 12
जहाँ rn, nवीं कक्षा की त्रिज्या है।
यह बल इलेक्ट्रॉन को आवश्यक अभिकेन्द्र बल देता है।
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

UP Board Solutions

प्रश्न 13:
जब कोई हाइड्रोजन परमाणु स्तर n से स्तर (n-1) पर व्युत्तेजित होता है तो उत्सर्जित विकिरण की आवृत्ति हेतु व्यंजक प्राप्त कीजिए।n के अधिक मान हेतु, दर्शाइए कि यह आवृत्ति, इलेक्ट्रॉन की कक्षा में परिक्रमण की क्लासिकी आवृत्ति के बराबर है।
हल:
n वें ऊर्जा स्तर में हाइड्रोजन परमाणु की ऊर्जा निम्नलिखित है
UP Board Solutions for Class 12 Physics Chapter 12 Atoms 13
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter
अत: समीकरण (4) एवं (5) से स्पष्ट है कि के उच्च मानों हेतु 7वीं कक्षा में इलेक्ट्रॉन की क्लासिकी घूर्णन आवृत्ति, हाइड्रोजन परमाणु द्वारा n वें ऊर्जा स्तर से (n-1) वें ऊर्जा स्तर में जाने के दौरान उत्सर्जित विकिरण की आवृत्ति के बराबर होती है।

प्रश्न 14:
क्लासिकी रूप में किसी परमाणु में इलेक्ट्रॉन नाभिक के चारों ओर किसी भी कक्षा में हो सकता है। तब प्रारूपी परमाण्वीय साइज किससे निर्धारित होता है? परमाणु अपने प्रारूपी साइज की अपेक्षा दस हजार गुना बड़ा क्यों नहीं है? इस प्रश्न ने बोर को अपने प्रसिद्ध परमाणु मॉडल, (UPBoardSolutions.com) जो आपने पाठ्यपुस्तक में पढ़ा है, तक पहुँचने से पहले बहुत उलझन में डाला था। अपनी खोज से पूर्व उन्होंने क्या किया होगा, इसको अनुकरण करने के लिए हम मूल नियतांकों की प्रकृति के साथ निम्न गतिविधि करके देखें कि क्या हमें लम्बाई की विमा वाली कोई राशि प्राप्त होती है, जिसका साइज, लगभग परमाणु के ज्ञांत साइज (~10-10m) के बराबर है।।
(a) मूल नियतांकों e, me और c से लम्बाई की विमा वाली राशि की रचना कीजिए। उसका संख्यात्मक मान भी निर्धारित कीजिए।
(b) आप पाएँगे कि (a) में प्राप्त लम्बाई परमाण्वीय विमाओं के परिमाण की कोटि से काफी छोटी है। इसके अतिरिक्त इसमें सम्मिलित है। परन्तु परमाणुओं की ऊर्जा अधिकतर अनापेक्षिकीय क्षेत्र (non: relativistic domain) में है जहाँ c की कोई अपेक्षित भूमिका नहीं है। इसी तर्क ने बोर को c का परित्याग कर सही परमाण्वीय साइज को प्राप्त करने के लिए कुछ अन्य देखने के लिए प्रेरित किया। इस समय प्लांक नियतांक h का कहीं और पहले ही आविर्भाव हो चुका था। बोर की सूक्ष्मदृष्टि ने पहचाना कि h, me और e के (UPBoardSolutions.com) प्रयोग से ही सही परमाणु साइज प्राप्त होगा। अतः h, me और e से ही लम्बाई की विमा वाली किसी राशि की रचना कीजिए और पुष्टि कीजिए कि इसका संख्यात्मक मान वास्तव
में सही परिमाण की कोटि का है।
हल:
(a) दी गई राशियों के विमीय सूत्र निम्नलिखित हैं
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter
UP Board Solutions for Class 12 Physics Chapter 12 Atoms 14
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

UP Board Solutions

प्रश्न 15:
हाइड्रोजन परमाणु की प्रथम उत्तेजित अवस्था में इलेक्ट्रॉन की कुल ऊर्जा लगभग – 3.4eV है।
(a) इस अवस्था में इलेक्ट्रॉन की गतिज ऊर्जा क्या है?
(b) इस अवस्था में इलेक्ट्रॉन की स्थितिज ऊर्जा क्या है?
(c) यदि स्थितिज ऊर्जा के शून्य स्तर के चयन में परिवर्तन कर दिया जाए तो ऊपर दिए गए उत्तरों में से कौन-सा उत्तर परिवर्तित होगा?
हल:
(a) माना प्रथम उत्तेजित अवस्था में कक्षा की त्रिज्या r है।
∵ इलेक्ट्रॉन को अभिकेन्द्र बल, स्थिर विद्युत बल से मिलता है; अतः
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter
(b) स्थितिज ऊर्जा U = – 2K
⇒ U = – 6.8 eV
(c) यदि स्थितिज ऊर्जा के शून्य को बदल दिया जाए तो इलेक्ट्रॉन की स्थितिज ऊर्जा तथा कुल ऊर्जा बदल जाएगी जबकि गतिज ऊर्जा अपरिवर्तित रहेगी।

प्रश्न 16:
यदि बोर का क्वांटमीकरण अभिगृहीत ( कोणीय संवेग [latex]\frac { nh }{ 2\pi }[/latex]) प्रकृति का मूल नियम है तो यह ग्रहीय गति की दशा में भी लागू होना चाहिए। तब हम सूर्य के चारों ओर ग्रहों की कक्षाओं के क्वांटमीकरण के विषय में कभी चर्चा क्यों नहीं करते?
हल:
माना हम बोर के क्वांटम सिद्धान्त को पृथ्वी की गति पर लागू करते हैं। इसके अनुसार
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter
∴ n का मान बहुत अधिक है; अत: इसका यह अर्थ हुआ कि ग्रहों की गति से सम्बद्ध कोणीय संवेग तथा ऊर्जा [latex]\frac { h }{ 2\pi }[/latex] की तुलना में (UPBoardSolutions.com) अत्यन्त बड़ी हैं। n के इतने उच्च मान के लिए, किसी ग्रह के बोर मॉडल के दो क्रमागत क्वांटमीकृत ऊर्जा स्तरों के बीच ग्रह के कोणीय संवेग तथा ऊर्जाओं के अन्तर किसी ऊर्जा स्तर में ग्रह के कोणीय संवेग तथा ऊर्जा की तुलना में नगण्य हैं, इसी कारण ग्रहों की गति में ऊर्जा स्तर क्वांटमीकृत होने के स्थान पर सतत प्रतीत होते हैं।

UP Board Solutions

प्रश्न 17:
प्रथम बोर-त्रिज्या और म्यूओनिक हाइड्रोजन परमाणु [अर्थात् कोई परमाणु जिसमें लगभग 207 me द्रव्यमान का ऋणावेशित म्यूऑन(μ) प्रोटॉन के चारों ओर घूमता है। की निम्नतम अवस्था ऊर्जा को प्राप्त करने का परिकलन कीजिए।
हल:
एक म्यूओनिक हाइड्रोजन परमाणु में प्रोटॉन रूपी नाभिक के चारों ओर एक म्यूऑन (आवेश = – 1.6 x 10-19C, द्रव्यमान mμ = 207me
वृत्तीय कक्षा में चक्कर लगाता है।
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

परीक्षोपयोगी प्रश्नोत्तर

बहुविकल्पीय प्रश्न

प्रश्न 1:
हाइड्रोजन परमाणु की भूतल (आद्य) अवस्था में ऊर्जा – 13.6 इलेक्ट्रॉन-वोल्ट है। n = 3ऊर्जा स्तर में इसकी ऊर्जा होगी (2014)
(i) -1.51 eV
(ii) – 3.20 eV
(iii)- 0.51 eV
(iv) 40.80 eV
उत्तर:
(i) -1.51 eV

UP Board Solutions

प्रश्न 2:
एक हाइड्रोजन परमाणु को आयनित करने के लिए आवश्यक न्यूनतम ऊर्जा है
या
हाइड्रोजन परमाणु की आयनन ऊर्जा है (2015, 18)
(i) 13.6 ey से अधिक
(ii) 13.6 eV
(iii) 10.2 eV
(iv) 3.4 eV
उत्तर:
(ii) 13.6 eV

प्रश्न 3:
किसी हाइड्रोजन परमाणु का इलेक्ट्रॉन उत्तेजित अवस्था, n = 5 में है। इससे उत्सर्जित होने वाले विकिरण में सम्भव आवृत्तियों की कुल संख्या होगी (2009)
(i) 4
(ii) 5
(iii) 10
(iv) 25
उत्तर:
(iii) 10

प्रश्न 4:
हाइड्रोजन परमाणु की द्वितीय कक्षा से एक इलेक्ट्रॉन को निकालने के लिए आवश्यक ऊर्जा होगी (हाइड्रोजन परमाणु का आयनीकरण विभव = 13.6V) (2009)
(i) 13.6 eV
(ii) 6.3 eV
(iii) 3.4 ev
(iv) 2.4 eV
उत्तर:
(iii) 3.4 ev

प्रश्न 5:
हाइड्रोजन परमाणु में इलेक्ट्रॉन की प्रथम कक्षा की त्रिज्या 0.53Å है। इसकी तीसरी कक्षा की त्रिज्या होगी (2012)
(i) 4.77 [latex]\mathring { A }[/latex]
(ii) 1.69 [latex]\mathring { A }[/latex]
(iii) 1.06 [latex]\mathring { A }[/latex]
(iv) 1.0 [latex]\mathring { A }[/latex]
उत्तर:
(i) 4.77 [latex]\mathring { A }[/latex]

प्रश्न 6:
हाइड्रोजन परमाणु के भूतलऊर्जा-स्तर में इलेक्ट्रॉन का कोणीय संवेग है (2010, 17)
(i) h/π
(ii) h/ 2π
(iii) [latex]\frac { 2\pi }{ h }[/latex]
(iv) π/h
उत्तर:
(ii) h/ 2π

UP Board Solutions

प्रश्न 7:
हाइड्रोजन परमाणु में त्रिज्या की कक्षा में इलेक्ट्रॉन की गतिज ऊर्जा है (2011)
UP Board Solutions for Class 12 Physics Chapter 12 Atoms p7
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 12 Atoms p7a

प्रश्न 8:
चार ऊर्जा स्तरों के बीच संक्रमण से उत्सर्जित स्पेक्ट्रमी रेखाओं की संख्या होगी (2011)
(i) 10
(ii) 8
(iii) 6
(iv)3
उत्तर:
(iii) 6

प्रश्न 9:
हाइड्रोजन की लाइमन श्रेणी की प्रथम रेखा की तरंगदैर्घ्य है (2009)
(i) 912 [latex]\mathring { A }[/latex]
(ii) 1125 [latex]\mathring { A }[/latex]
(iii) 1215 [latex]\mathring { A }[/latex]
(iv) 1152 [latex]\mathring { A }[/latex]
उत्तर:
(iii) 1215 [latex]\mathring { A }[/latex]

अतिलघु उत्तरीय प्रश्न

प्रश्न 1:
परमाणु में इलेक्ट्रॉन की स्थायी कक्षा किसे कहते हैं तथा उसकी शर्त क्या होती है? (2012)
उत्तर:
कुछ निश्चित त्रिज्याओं की कक्षाएँ जिनमें घूमता इलेक्ट्रॉन ऊर्जा का उत्सर्जन नहीं करता है, स्थायी कक्षाएँ कहलाती हैं। इन कक्षाओं में घूमते इलेक्ट्रॉन का कोणीय संवेग h/2π का पूर्ण गुणक होता है। अर्थात्
mνr= nh/2π (जहाँ, n = 1, 2, 3, …)

प्रश्न 2:
परमाणु में इलेक्ट्रॉन की स्थायी कक्षा की विशेषताओं का उल्लेख कीजिए। (2015)
उत्तर:
इलेक्ट्रॉन की स्थायी कक्षा वह होती है जिसमें घूमते हुए इलेक्ट्रॉन ऊर्जा उत्सर्जित नहीं करता। इन कक्षाओं में घूमते इलेक्ट्रॉन का कोणीय संवेग, h/2π को पूर्ण गुणज होता है, जहाँ h प्लांक नियतांक है। इसे क्वाण्टम प्रतिबन्ध कहते हैं।

UP Board Solutions

प्रश्न 3:
किसी परमाणु के उत्तेजन विभव से क्या तात्पर्य है? (2013)
उत्तर:
वह न्यूनतम त्वरक विभव जो किसी इलेक्ट्रॉन को इतनी ऊर्जा प्रदान कर सके कि वह किसी परमाणु से टकराने पर उसे निम्नतम ऊर्जा-स्तर से ठीक आगे वाले ऊर्जा-स्तर में उत्तेजित कर सके, परमाणु का प्रथम उत्तेजन विभव कहलाता है।

प्रश्न 4:
आयनन ऊर्जा की परिभाषा दीजिए। हाइड्रोजन परमाणु के लिए इसका मान क्या है? (2016)
उत्तर:
यदि किसी परमाणु को निम्नतम अथवा मूल अवस्था में +13.6eV ऊर्जा बाहर से दी जाए तो परमाणु की कुल ऊर्जा = -13.6eV +13.6 eV = 0 हो जाएगी अर्थात् परमाणु आयनित अवस्था में पहुँच जाएगा। यह बाह्य ऊर्जा ही परमाणु की आयनन ऊर्जा कहलाती है। हाइड्रोजन परमाणु के लिए इसका मान 13.6 eV होगा।

प्रश्न 5:
हाइड्रोजन परमाणु की आयनन ऊर्जा ज्ञात कीजिए। (2015)
हल:
UP Board Solutions for Class 12 Physics Chapter 12 Atoms a5
अतः आयनित अवस्था (n = ∞] में ऊर्जा E= 0
परमाणु की निम्नतम अवस्था (n= 1) में ऊर्जा E1 = – 13.6 eV
अत: यदि परमाणु को निम्नतम अथवा मूल अवस्था में 13.6 eV ऊर्जा बाहर से दी जाये, तो परमाणु की कुल ऊर्जा =- 13.6 eV+ 13.6 eV = 0 हो जायेगी अर्थात् परमाणु आयनित अवस्था में पहुँच जायेगा।।

UP Board Solutions

प्रश्न 6:
रिडबर्ग नियतांक का मान लिखिए। (2011)
उत्तर:
1.097 x 107 मीटर-1

प्रश्न 7:
हाइड्रोजन परमाणु की आयनन ऊर्जा 13.6 eV है। हीलियम परमाणु की आयनन ऊर्जा कितनी होगी? (2013)
हल:
Z परमाणु क्रमांक वाले हाइड्रोजन सदृश परमाणु की n वीं बोहर कक्षा की आयनन ऊर्जा
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

प्रश्न 8:
किसी उत्तेजित हाइड्रोजन परमाणु के इलेक्ट्रॉन की ऊर्जा-3.4eV है। इस इलेक्ट्रॉन का कोणीय संवेग ज्ञात कीजिए। (2012)
हल:
UP Board Solutions for Class 12 Physics Chapter 12 Atoms a8
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

प्रश्न 9:
हाइड्रोजन के प्रथम बोर कक्षा की त्रिज्या 0.5[latex]\mathring { A }[/latex] है। तृतीय बोर कक्षा की त्रिज्या ज्ञात कीजिए। (2017)
हल:
दिया है, n1= 1, n3 = 3, r1 = 0.5 [latex]\mathring { A }[/latex], r3 = ?
बोर के nवीं कक्षा की त्रिज्या rn α n2 से
UP Board Solutions for Class 12 Physics Chapter 12 Atoms a9

प्रश्न 10:
हाइड्रोजन परमाणु के वर्णक्रम में बॉमर श्रेणी की प्रथम रेखा की तरंगदैर्घ्य की गणना कीजिए। (2017)
उत्तर:
6563 [latex]\mathring { A }[/latex]

प्रश्न 11:
हाइड्रोजन पर है बॉमर श्रेणी की प्रथम रेखा की तरंगदैर्ध्य रिडबर्ग नियतांक के पदों में बताइए। (2010)
हल:
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

प्रश्न 12:
हाइड्रोजन के स्पेक्ट्रम में प्राप्त होने वाली कुछ स्पेक्ट्रमी रेखाओं की तरंगदैर्घ्य नीचे दी गई हैं। निम्न में से लाइमन श्रेणी की तरंगदैर्घ्य चुनिए
6560 [latex]\mathring { A }[/latex], 1216 [latex]\mathring { A }[/latex], 9546 [latex]\mathring { A }[/latex], 4860 [latex]\mathring { A }[/latex], 1026 [latex]\mathring { A }[/latex]: (2012)
हल:
1216 [latex]\mathring { A }[/latex], 1026 [latex]\mathring { A }[/latex].

UP Board Solutions

प्रश्न 13:
हाइड्रोजन परमाणु की बॉमर श्रेणी की रेखाओं की आवृत्ति के लिए सूत्र लिखिए। (2014)
उत्तर:
UP Board Solutions for Class 12 Physics Chapter 12 Atoms a13

प्रश्न 14:
हाइड्रोजन स्पेक्ट्रम में बॉमर श्रेणी की द्वितीय रेखा की तरंगदैर्घ्य रिडबर्ग नियतांक R के पदों में लिखिए। (2015)
हल:
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

लघु उत्तरीय प्रश्न

प्रश्न 1:
हाइड्रोजन परमाणु के लिए बोर की परिकल्पनाएँ लिखिए। (2014, 16, 17)
या
हाइड्रोजन परमाणु के लिए बोर की अभिधारणाएँ लिखिए। हाइड्रोजन परमाणु की प्रथम कक्षा की त्रिज्या के लिए व्यंजक निगमित कीजिए। (2015)
या
बोर के परमाणविक मॉडल के अभिगृहीतों का उल्लेख कीजिए। इसके आधार पर इलेक्ट्रॉन की nवीं कक्षा की त्रिज्या के लिए व्यंजक प्राप्त कीजिए। (2017)
उत्तर:
रदरफोर्ड के परमाणु मॉडल की कमियों को नील बोर ने प्लांक के क्वाण्टम सिद्धान्त के आधार पर सन् 1913 में दूर किया। इसके लिए उन्होंने निम्नलिखित तीन नये अभिगृहीत (postulate) प्रस्तुत किये
बोर की परिकल्पनाएँ।
(i) इलेक्ट्रॉन नाभिक के चारों ओर केवल उन्हीं कक्षाओं में घूम सकते हैं जिनके लिए उनका कोणीय संवेग h/2π का पूर्ण गुणज हो,
अर्थात् Iω = mrnνn) = nh/2π
जहाँ I इलेक्ट्रॉन की nवीं कक्षा में जड़त्व-आघूर्ण तथा ω कोणीय वेग है। पूर्णांक n = 1, 2, 3, … तथा h प्लांक नियतांक है। इस प्रकार बोर ने माना कि इलेक्ट्रॉन नाभिक के चारों ओर कुछ निश्चित त्रिज्या की कक्षाओं में ही घूम सकते हैं। इन कक्षाओं को स्थायी कक्षाएँ (stationary orbits) कहते हैं।
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter
(ii) स्थायी कक्षाओं में घूमते समय इलेक्ट्रॉन ऊर्जा का उत्सर्जन नहीं  करते। अतः परमाणु का स्थायित्व बना रहता है।।
(iii) जब परमाणु को बाहर से ऊर्जा मिलती है तो उसका कोई इलेक्ट्रॉन उसे ग्रहण कर ऊँची कक्षा में चला जाता है। यह परमाणु की उत्तेजित अवस्था कहलाती है। इलेक्ट्रॉन ऊँची कक्षा में केवल 10-8 सेकण्ड तक ठहर कर तुरन्त वापस किसी भी नीची कक्षा में लौट आता है और लौटते समय दोनों कक्षाओं की ऊर्जा के अन्तर के बराबर ऊर्जा वैद्युत-चुम्बकीय तरंगों के रूप में उत्सर्जित करता है। यदि उत्सर्जित तरंगों की आवृत्ति ν हो तथा इलेक्ट्रॉन की उच्च कक्षा में ऊर्जा E2 तथा नीची कक्षा में ऊर्जा E1 हों, तो ,
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

अत: ऊर्जा का उत्सर्जन केवल तभी तक होता है जब तक कि कोई इलेक्ट्रॉन किसी निश्चित ऊँची कक्षा से नीची कक्षा में लौटता है। इस प्रकार परमाणु से केवल कुछ निश्चित आवृत्तियों (तरंगदैर्घ्य) की तरंगें उत्सर्जित होती हैं जो रेखीय स्पेक्ट्रम देती हैं।
इस प्रकार परमाणु के बोर मॉडल के आधार पर हाइड्रोजन के स्पेक्ट्रम की व्याख्या की गई।

हाइड्रोजन परमाणु की प्रथम कक्षा की त्रिज्या के लिए व्यंजक:
हाइड्रोजन-सदृश परमाणु में एकल इलेक्ट्रॉन परमाणु के इलेक्ट्रॉन नाभिक के चारों ओर एक स्थायी कक्षा में घूमता है। माना कि e, m वे ν इलेक्ट्रॉन के क्रमश: आवेश, द्रव्यमान (UPBoardSolutions.com) व वेग हैं तथा कक्षा की त्रिज्या है। (हाइड्रोजन नाभिक पर धनावेश Ze है, जहाँ,Z परमाणु-क्रमांक है (हाइड्रोजन परमाणु के लिए Z = 1)। इलेक्ट्रॉन को अपनी कक्षा में घूमने के लिए आवश्यक अभिकेन्द्र बल, नाभिक व इलेक्ट्रॉन के बीच स्थिर वैद्युत
आकर्षण-बल से प्राप्त होता है। अतः
UP Board Solutions for Class 12 Physics Chapter 12 Atoms 11b
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

प्रश्न 2:
हाइड्रोजन परमाणु की मूल अवस्था में इलेक्ट्रॉन की ऊर्जा- 13.6 eV है। इसे 13.6 eV ऊर्जा दी जाती है। यह किस ऊर्जा स्तर में पहुँचेगा? इस प्रक्रिया में अवशोषित फोटॉन की | तरंगदैर्घ्य कितनी होगी ? (2010)
हल:
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

प्रश्न 3:
सोडियम परमाणु का प्रथम उत्तेजन विभव 2.1 वोल्ट है। इस परमाणु द्वारा उत्सर्जित प्रकाश की तरंगदैर्घ्य ज्ञात कीजिए। (2012)
हल:
परमाणु का प्रथम उत्तेजन-विभव 2.1 वोल्ट है। इसका अर्थ यह है कि परमाणु निम्नतम ऊर्जा-स्तर, से अगले ऊर्जा-स्तर में जाने के लिए 2.1 इलेक्ट्रॉन वोल्ट (eV) ऊर्जा लेता है। यदि इस ऊर्जा-स्तर से वापस निम्नतम ऊर्जा-स्तर में लौटते समय परमाणु द्वारा उत्सर्जित प्रकाश की तरंगदैर्घ्य λ( आवृत्ति ν ) हो, तो :
क्वाण्टम के सिद्धान्त के अनुसार,
∆E = hν = hc/λ
जहाँ, ∆E इन दो ऊर्जा-स्तरों को अन्तर है।
UP Board Solutions for Class 12 Physics Chapter 12 Atoms p13

UP Board Solutions

प्रश्न 4:
संतत (अविरत) स्पेक्ट्रम व रेखीय स्पेक्ट्रम में अन्तर बताइए। (2013)
उत्तर:
रेखीय स्पेक्ट्रम:
इस प्रकार के स्पेक्ट्रम में काली पृष्ठभूमि पर केवल कुछ चमकीली रंगीन रेखाएँ प्राप्त होती हैं। इन्हें स्पेक्ट्रमी रेखाएँ (spectrum lines) कहते हैं, जिनकी संख्या तथा तरंगदैर्घ्य केवल लिये गए तत्त्व (element) पर निर्भर करती है, किसी अन्य राशि पर नहीं।

अविरत या संतत स्पेक्ट्रम:
इस स्पेक्ट्रम में लाल रंग से लेकर बैंगनी तक सभी रंगों की सभी तरंगदैर्ध्य विद्यमान रहती हैं। इसमें सभी रंग एक सिरे से दूसरे सिरे तक एक बिना टूटी हुई पट्टी के रूप में (UPBoardSolutions.com) उपस्थित रहते हैं, अर्थात् इन स्पेक्ट्रमों में यह बताना कठिन है कि एक रंग कहाँ समाप्त हो रहा है। और दूसरा रंग कहाँ से आरम्भ हो रहा है। पास-पास के रंग एक-दूसरे में इस प्रकार विलीन रहते हैं कि दो रंगों के बीच कोई निश्चित पृथक्कारी रेखा (line of separation) नहीं होती।

प्रश्न 5:
बॉमर श्रेणी की द्वितीय रेखा की तरंगदैर्घ्य 4860Å है। ज्ञात कीजिए
(i) रिडबर्ग नियतांक
(ii) बॉमर श्रेणी की प्रथम रेखा की तरंगदैर्घ्य (2017)
हल:
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

प्रश्न 6:
बॉमर श्रेणी की प्रथम रेखा की तरंगदैर्ध्य 6563Å है। इस श्रेणी की दूसरी रेखा की तरंगदैर्घ्य ज्ञात कीजिए। (2013)
हल:
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter
UP Board Solutions for Class 12 Physics Chapter 12 Atoms 16a

दीर्घ उत्तरीय प्रश्न

प्रश्न 1:
रदरफोर्ड के परमाणु मॉडल की व्याख्या कीजिए तथा इसकी कमियों का उल्लेख कीजिए। (2015)
उत्तर:
परमाणु की सही संरचना जानने के लिये रदरफोर्ड ने सन् स्वर्ण-पत्र 1911 में एक महत्त्वपूर्ण प्रयोग किया जिसे चित्र 12.4 में दिखाया प्रस्फुर गया है। इसमें रेडियोऐक्टिव तत्त्व पोलोनियम (polonium) से गणित्र उच्च गतिज ऊर्जा से निकलने वाली α-कणों के एक बारीक किरण-पुंज को एक बहुत पतले स्वर्ण-पत्र पर गिराया गया। पूरे प्रबन्ध को निर्वात् में रखा गया जिससे α -कणों की वायु के कणों से कोई टक्कर न हो। रदरफोर्ड ने यह देखा कि स्वर्ण-पत्र में से गुजरते हुए ये कण विभिन्न दिशाओं में विक्षेपित हो जाते हैं।
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter
ऐल्फा α-कणों के अपने मार्ग से विक्षेपित होने की इस घटना को , ‘प्रकीर्णन’ कहते हैं। स्वर्ण-पत्र से विभिन्न दिशाओं में निकलने वाले कणों को एक प्रस्फुर गणित्र (scintillation counter) द्वारा गिन सकते हैं। रदरफोर्ड ने इस प्रयोग से निम्नलिखित महत्त्वपूर्ण तथ्य प्राप्त किये

1. अधिकांश α-कण स्वर्ण-फ्त्र के आर-पार बिना प्रभावित हुए सीधे ही निकल जाते हैं। इससे रदरफोर्ड ने यह निष्कर्ष निकाला कि परमाणु का अधिकांश भाग (UPBoardSolutions.com) भीतर से खोखला होता है।
(यह किसी भी दशा में ठोस नहीं हो सकता जैसा कि टॉमसन ने माना था)।

2. कुछ α-कण छोटे-छोटे कोण बनाते हुए विक्षेपित हो जाते हैं, तथा इनका कोणीय वितरण
सुनिश्चित होता है। अब, , चूँकि α-कण धनावेशित हैं, अतः इन्हें विक्षेपित करने वाला परमाणु भी धनावेशित होना चाहिए। इस आधार पर रदरफोर्ड ने यह माना कि (UPBoardSolutions.com) परमाणु का सम्पूर्ण धन-आवेश एक सूक्ष्म स्थान में केन्द्रित रहता है (यह परमाणु में समान रूप से वितरित नहीं हो सकता जैसा कि टॉमसन ने माना था)।
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

3. कुछ α-कण ऐसे भी हैं जो अपने प्रारम्भिक मार्ग से 90° से भी अधिक कोण पर प्रकीर्णित होकर वापस लौट आते हैं (चित्र 12.5)। इससे यह पता चलता है कि जब धनावेशित α-कण स्वर्ण-पत्र के परमाणुओं में से गुजरते हैं, तो किसी-किसी कण पर इतना अधिक प्रतिकर्षण-बल लगता है। कि वह तीव्रगामी α-कण को वापस लौटा देता है। इस आधार पर रदरफोर्ड ने यह माना कि धन-ऑवेश परमाणु के भीतर एक अत्यन्त सूक्ष्म स्थान में संकेन्द्रित रहता है। इस स्थान को ‘नाभिक’ (nucleus) कहते हैं। गणना करने पर नाभिक की त्रिज्या 10-15 मीटर की कोटि की पायी जाती है, जबकि परमाणु की त्रिज्या 10-10 मीटर की कोटि की है। अत: (UPBoardSolutions.com) नाभिक की त्रिज्या परमाणु की त्रिज्या के दस हजारवें भाग के बराबर होती है। परमाणु के शेष खाली भाग में केवल इलेक्ट्रॉन होते हैं। α-कण नाभिक के जितना पास आयेगा, उस पर उतना ही अधिक प्रतिकर्षण-बल लगेगा और वह उतना ही अधिक विक्षेपित होगी। यदि परमाणु के आकार की तुलना में नाभिक अत्यन्त छोटा है, तो किसी ४-कण की नाभिक के समीप पहुँचने की सम्भावना भी बहुत कम होगी। अतः अधिक कोणों पर प्रकीर्णित होने वाले α-कणों की संख्या कम होगी। प्रयोग से इस तथ्य की पुष्टि होती है। गणना द्वारा देखा गया है कि लगभग 20,000 में से केवल 1 ही α-कण ऐसा है जो कि 90° से अधिक कोण पर प्रकीर्णित होता है। इस प्रकार, इस प्रयोग द्वारा परमाणु के धन-आवेश के विस्तार के सम्बन्ध में महत्त्वपूर्ण जानकारी प्राप्त हुई।

4. α-कणों के प्रकीर्णन के प्रयोग द्वारा कूलॉम नियमे की सत्यता के सम्बन्ध में भी जानकारी प्राप्त हुई। रदरफोर्ड ने यह माना था कि जब कोई α-कण स्वर्ण-पत्र के परमाणुओं में से गुजरता है, तो उस पर नाभिक द्वारा लगाया गया प्रतिकर्षण-बल कूलॉम के नियमानुसार (कण की नाभिक से दूरी के वर्ग के व्युत्क्रमानुपाती) होता है। जो कण परमाणु से गुजरते समय नाभिक से दूर रहता है। उस पर लगने वाला प्रतिकर्षण-बल इतना कम होता है कि वह बिना किसी विशेष विक्षेप के अपने मार्ग पर चला जाता है। परन्तु जो कण नाभिक के (UPBoardSolutions.com) जितना समीप से गुजरता है उस पर उतना ही अधिक प्रतिकर्षण-बल लगता है तथा वह उतने ही बड़े कोण से प्रकीर्णित होता है। रदरफोर्ड ने, कूलॉम के नियम के आधार पर विभिन्न कोण पर प्रकीर्णित होने वाले कणों का परिकलन किया। और यह पाया कि नाभिकं द्वारा α-कणों का प्रकीर्णन कूलॉम नियम के अनुसार होता है। दूसरे शब्दों में, कूलॉम का नियम परमाणवीय दूरियों के लिये भी लागू रहता है।

5. रदरफोर्ड ने अपने प्रयोग द्वारा विभिन्न धातुओं के नाभिकों के धन-आवेशों के सम्बन्ध में भी जानकारी प्राप्त की। उसने -कणों को विभिन्न धातुओं (जैसे–सोना, चाँदी, प्लैटिनम इत्यादि) के पतले पत्रों पर गिराकर एक निश्चित दिशा में प्रकीर्णित होने वाले कणों को गिना और देखा कि यह संख्या विभिन्न धातुओं के पत्रों के लिए भिन्न-भिन्न आती है। इससे यह पता चला कि विभिन्न धातुओं के नाभिकों में धन-आवेश का परिमाण भिन्न-भिन्न होता है। नाभिक में धन-आवेश जितना अधिक होगा, वह α-कण को उतने ही अधिक बल से प्रतिकर्षित करेगा तथा α-कण अपने मार्ग से उतना ही अधिक प्रकीणित होगा।

रदरफोर्ड ने गणना द्वारा यह दिखाया कि एक दिये हुए धातु-पत्र द्वारा एक निश्चित कोण-परिसर (range of angles) के भीतर प्रकीर्णित होने वाले -कणों की संख्या उस धातु के (UPBoardSolutions.com) नाभिक के धन-आवेश की मात्रा के अनुक्रमानुपाती है। इस आधार पर सन् 1920 में चैडविक ने अनेक धातुओं के नाभिकों के धन-आवेशों को ज्ञात किया तथा यह पाया कि किसी धातु के नाभिक के धन-आवेश का परिमाण Ze होता है, जहाँ है इलेक्ट्रॉन के (ऋण) आवेश का मान है तथा Z उस धातु के लिये नियतांक है। Z को ‘परमाणु-क्रमांक’ (atomic number) कहते हैं।

रदरफोर्ड के परमाणु मॉडल में कमियाँ: रदरफोर्ड के परमाणु मॉडल में निम्न दो कमियाँ पायी गयीं

(i) परमाणु के स्थायित्व के सम्बन्ध में:
नाभिक के चारों ओर घूमते इलेक्ट्रॉन में अभिकेन्द्र त्वरण होता है। विद्युत गतिविज्ञान (electrodynamics) के अनुसार, त्वरित आवेशित कण ऊर्जा (विद्युत-चुम्बकीय तरंगें) उत्सर्जित करता है। अतः नाभिक के चारों ओर विभिन्न कक्षाओं में घूमते इलेक्ट्रॉनों से विद्युतचुम्बकीय तरंगें लगातार उत्सर्जित होनी चाहिए। इस प्रकार, इलेक्ट्रॉनों की ऊर्जा का ह्रास होने के कारण उनके वृत्तीय पथ की त्रिज्या लगातार कम होती जानी चाहिए और अन्त में वे नाभिक में गिर जाने चाहिए। इस प्रकार परमाणु स्थायी ही नहीं रह सकता।

(ii) रेखीय स्पेक्ट्रम की व्याख्या के सम्बन्ध में:
मॉडल में इलेक्ट्रॉनों के वृत्तीय पथ की त्रिज्या के लगातार बदलते रहने से उनके घूमने की आवृत्ति भी बदलती रहेगी। इसके फलस्वरूप इलेक्ट्रॉन सभी आवृत्तियों की विद्युत-चुम्बकीय तरंगें उत्सर्जित करेंगे, अर्थात् इन तरंगों का स्पेक्ट्रम संतत (continuous) होगा। परन्तु वास्तव में (UPBoardSolutions.com) परमाणुओं के स्पेक्ट्रम संतत न होकर, रेखीय होते हैं अर्थात् उनमें बहुत-सी बारीक रेखाएँ होती हैं तथा प्रत्येक स्पेक्ट्रमी रेखा की एक निश्चित आवृत्ति होती है। अत: परमाणु से केवल कुछ निश्चित आवृत्ति की ही तरंगें उत्सर्जित होनी चाहिए, सभी आवृत्तियों की नहीं। इस प्रकार, रदरफोर्ड मॉडल रेखीय स्पेक्ट्रम की व्याख्या करने में असक्षम रहा। इन कमियों को नील बोर ने क्वाण्टम सिद्धान्त के आधार पर दूर किया।

UP Board Solutions

प्रश्न 2:
हाइड्रोजन परमाणु के लिए एक ऊर्जा-स्तर आरेख बनाइए तथा (i) लाइमन श्रेणी एवं (ii) बॉमर श्रेणी के संगत संक्रमण दिखाइए। ये श्रेणियाँ स्पेक्ट्रम के किस क्षेत्र में आती हैं? (2011)
या
हाइड्रोजन परमाणु के लिए ऊर्जा-स्तर आरेख खींचिए तथा स्पेक्ट्रमी रेखाओं की लाइमन, बॉमर तथा पाश्चन श्रेणियों की उत्पत्ति समझाइए। इन श्रेणियों में से कौन-सी स्पेक्ट्रम के दंश्य भाग में मिलती है? (2015, 17)
या
ऊर्जा स्तर की सहायता से हाइड्रोजन परमाणु में बॉमर श्रेणी का बनना समझाइए। इस श्रेणी की रेखाएँ विद्युत-चुम्बकीय स्पेक्ट्रम के किस भाग में पड़ती हैं? (2014)
या
हाइड्रोजन स्पेक्ट्रम की विभिन्न श्रेणियों के लिए तरंगदैर्घ्य का सूत्र लिखिए। हाइड्रोजन – परमाणु की लाइमन श्रेणी की प्रथम रेखा की तरंगदै ज्ञात कीजिए। इस श्रेणी की सीमा
तरंगदैर्घ्य भी ज्ञात कीजिए। [R= 1.097 x 107 मी-1 ] (2012)
या
एक ऊर्जा स्तर आरेख खींचकर परमाणु के उत्सर्जन स्पेक्ट्रम की लाइमन तथा बॉमर श्रेणियाँ प्रदर्शित कीजिए। (2013)
या
एक स्पष्ट ऊर्जा-स्तर आरेख खींचकर हाइड्रोजन परमाणु की लाइमन तथा बॉमर स्पेक्ट्रम श्रेणियाँ प्रदर्शित कीजिए। ये श्रेणियाँ किस क्षेत्र में आती हैं? (2013)
या
बॉमर श्रेणी के स्पेक्ट्रमी रेखाओं की उत्पत्ति ऊर्जा-स्तर आरेख की सहायता से समझाइए। (2014)
या
हाइड्रोजन परमाणु की n वीं कक्षा में इलेक्ट्रॉन की ऊर्जा En = [latex ]\frac { -13.6 }{ { n }^{ 2 } }[/latex] इलेक्ट्रॉन वोल्ट (eV) सूत्र से दी जाती है। इसके आधार पर
(i) n = 1, 2, 3, 4, 5, 6 तथा ∞ के लिए विभिन्न ऊर्जा स्तरों की खींचिए।
(ii) विभिन्न इलेक्ट्रॉनिक संक्रमणों द्वारा हाइड्रोजन परमाणु के उत्सर्जन स्पेक्ट्रम की लाइमन तथा बॉमर श्रेणियों को प्रदर्शित कीजिए। (2015, 17)
या
हाइड्रोजन उत्सर्जन स्पेक्ट्रम में लाइमन श्रेणी का बनना, ऊर्जा स्तर आरेख के आधार पर समझाइए। लाइमन श्रेणी की प्रथम रेखा की तरंगदैर्घ्य की गणना कीजिए। (2015)
या
हाइड्रोजन परमाणु में ऊर्जा स्तरों की En = [latex ]\frac { -13.6 }{ { n }^{ 2 } }[/latex] eV से व्यक्त किया जाता है। ऊर्जा-स्तर आरेख खींचकर Hα तथा Gγ संक्रमणों को दर्शाइए तथा उनकी तरंगदैर्घ्य भी ज्ञात कीजिए। (2018)
उत्तर:
बोर ने अपने परमाणु मॉडल द्वारा हाइड्रोजन के विभिन्न ऊर्जा-स्तरों की ऊर्जाओं के लिए निम्नलिखित सूत्र प्राप्त किया
UP Board Solutions for Class 12 Physics Chapter 12 Atoms d2
इसमें पूर्णांक n क्वाण्टम संख्या है, R रिडबर्ग नियतांक, h प्लांक नियतांक तथा c प्रकाश की चाल है।
माना हाइड्रोजंग परमाणु के दो ऊर्जा-स्तर n1 व n2 हैं जिनकी संगत ऊर्जाएँ क्रमशः E1 व E2 हैं। यदि ऊर्जा-स्तर E2 से E1 पर संक्रमण द्वारा उत्सर्जित विकिरण की आवृत्ति ν हो, तो
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter
उपर्युक्त समीकरण द्वारा हाइड्रोजन के स्पेक्ट्रम में प्राप्त होने वाली सभी श्रेणियों की व्याख्या की जा सकती

1. लाइमन श्रेणी (Lyman Series):
इन रेखाओं को सबसे पहले लाइमन ने सन् 1916 में प्राप्त किया। जब किसी परमाणु में इलेक्ट्रॉन किसी ऊर्जा-स्तर से प्रथम (निम्नतम) ऊर्जा-स्तर में संक्रमण करता है (अर्थात् n1 = 1 तथा n2 = 2, 3, 4,…,∞) तब उत्सर्जित स्पेक्ट्रम की रेखाएँ पराबैंगनी भाग (ultraviolet part) में प्राप्त होती हैं। इनकी तरंगदैर्घ्य निम्नलिखित सूत्र से व्यक्त की जा सकती है
UP Board Solutions for Class 12 Physics Chapter 12 Atoms d2bइसकी सबसे बड़ी तरंगदैर्ध्य अथवा प्रथम रेखा की तरंगदैर्ध्य n = 2 के लिए प्राप्त होती है जिसका मान 1216Å तथा सबसे छोटी, तरंगदैर्घ्य n = 2 के लिए 912Å (श्रेणी-सीमा) प्राप्त होती है।
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

2. बॉमर श्रेणी (Balmer Series):
इन रेखाओं को सबसे पहले बॉमर ने सन् 1885 में प्राप्त किया। जब परमाणु किसी ऊँचे ऊर्जा-स्तर से दूसरे ऊर्जा-स्तर में संक्रमण करता है (अर्थात् n1 = 2 तथा n2 = 3, 4, 5, …) तो उत्सर्जित स्पेक्ट्रम की रेखाएँ दृश्य भाग (visible part) में मिलती हैं। इनकी तरंगदैर्ध्य को निम्नलिखित सूत्र से व्यक्त किया जा सकता है।
UP Board Solutions for Class 12 Physics Chapter 12 Atoms 15
n = 3 के लिए सबसे बड़ी तरंगदैर्घ्य 6563Å तथा n = ० के लिए इस श्रेणी की सबसे छोटी तरंगदैर्घ्य 3646 Å प्राप्त होती है। n = 3, 4, 5, 6, … के संगत प्राप्त रेखाओं को क्रमशः Hα, Hβ, Hγ, Hδ,…. रेखाएँ भी कहते हैं। बॉमर श्रेणी की प्रथम रेखा के लिए n = 3; अतः उपर्युक्त सूत्र में R = 1.097 x 107 मी-1 रखकर सरल करने पर
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

3. पाश्चन श्रेणी (Paschen Series):
जब किसी परमाणु में इलेक्ट्रॉन किसी उच्च ऊर्जा-स्तर से तीसरे ऊर्जा-स्तर में संक्रमण करता है, अर्थात् (n1 = 3 तथा n2 = 4, 5, 6,…) तो उत्सर्जित रेखाएँ स्पेक्ट्रम के अवरक्त (infrared) भाग में प्राप्त होती हैं। इनकी तरंगदै निम्नलिखित सूत्र से व्यक्त की जाती है।
UP Board Solutions for Class 12 Physics Chapter 12 Atoms d2f
4. ब्रैकेट श्रेणी (Bracket Series):
जब किसी परमाणु में इलेक्ट्रॉन किसी ऊँचे ऊर्जा-स्तर से चौथे ऊर्जा-स्तर में आता है (n1 = 4 तथा n2 = 5, 6, 7, …..) तो ये रेखाएँ भी स्पेक्ट्रम के अवरक्त भाग में प्राप्त होती हैं। इसकी तरंगदैर्घ्य निम्नलिखित सूत्र से व्यक्त की जाती है।
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

5. फुण्ड श्रेणी (Pfund Series):
जब किसी परमाणु में इलेक्ट्रॉन किसी ऊँचे ऊर्जा-स्तर से पाँचवें ऊर्जा-स्तर में आता है (n1 = 5 तथा n2 = 6, 7, 8, …..) तो ये रेखाएँ भी स्पेक्ट्रम के अवरक्त भाग में प्राप्त होती हैं। इसकी तरंगदैर्घ्य निम्नलिखित सूत्र से व्यक्त की जाती है।
UP Board Solutions for Class 12 Physics Chapter 12 Atoms d2h

प्रश्न 3:
हाइड्रोजन परमाणु का आयनन विभव 13.6 वोल्ट है। ज्ञात कीजिए
(i) रिडबर्ग नियतांक,
(ii) बॉमर श्रेणी की H लाइन की तरंगदैर्घ्य तथा (2012)
(iii) लाइमन श्रेणी की सबसे छोटी तरंगदैर्घ्य। (2011)
हल:
(i) ∵ हाइड्रोजन परमाणु का आयनन विभव = 13.6 वोल्ट; अतः आयनन ऊर्जा = 13.6 eV
∴ nवें ऊर्जा-स्तर की ऊर्जा En= – (13.6/n) eV
सूत्र En = – Rhc/n2 से,
E1 = – Rhc/12 = – Rhc तथा E = 0
∴ आयनन ऊर्जा = E∞ – E1 = 0- (- Rhc) = Rhc
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

प्रश्न 4:
एक हाइड्रोजन परमाणु दो लगातार संक्रमणों के द्वारा ऊर्जा अवस्थाn = 6 से निम्नतम ऊर्जा अवस्था में आता है। प्रथम संक्रमण में उत्सर्जित फोटॉन की ऊर्जा 1.13 eV है। ज्ञात कीजिए
(i) प्रथम संक्रमण के पश्चात् परमाणु जिस ऊर्जा अवस्था में आता है, उसके लिए nका मान।
(ii) द्वितीय संक्रमण में उत्सर्जित फोटॉन की ऊर्जा। हाइड्रोजन परमाणु की आयनन ऊर्जा = 13.6 eV है। (2012)
हल:
(i) हाइड्रोजन परमाणु की n वीं ऊर्जा-अवस्था में ऊर्जा
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter
UP Board Solutions for Class 12 Physics Chapter 12 Atoms d4a

प्रश्न 5:
हाइड्रोजन परमाणु की निम्नतम स्तर की ऊर्जा -13.6eV है।
(i) द्वितीय उत्तेजित अवस्था में किसी इलेक्ट्रॉन की गतिज ऊर्जा क्या है?
(ii) यदि इलेक्ट्रॉन द्वितीय उत्तेजित अवस्था से प्रथम उत्तेजित अवस्था में कूदता है तो स्पेक्ट्रमी रेखा की तरंगदैर्घ्य ज्ञात कीजिए।
(iii) परमाणु को आयनित करने के लिए आवश्यक ऊर्जा की गणना कीजिए। (2017)
हल:
UP Board Solutions for Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter
(iii) यदि आयनन ऊर्जा ∆E है तो आयनन के बाद परमाणु की ऊर्जा
= आयनन ऊर्जा + आयनन से पूर्व ऊर्जा
अथवा 0 = ∆E – 13.6eV (∵ आयनेने के बाद ऊर्जा E = 0)
अतः आयनन ऊर्जा ∆E = 13.6 eV

We hope the UP Board Solutions for Class 12 Physics Chapter 12 Atoms (परमाणु) help you. If you have any query regarding UP Board Solutions for Class 12 Physics Chapter 12 Atoms (परमाणु), drop a comment below and we will get back to you at the earliest.